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Foreword

The halfway mark in the twentieth century was the beginning of the
halcyon period of game theory. With the pioneering work of von
Neumann and Morgenstern, The Theory of Games and Economic Behaviour,
this new mathematical tool became the central focus of the research
efforts of the major military analysis groups. Under the leadership of the
Mathematics Department of the Rand Corporation, the theory was
developed, expanded, and applied to military problems.

Midcentury was also the time of inception of the guided interceptor
missile and concentration on the general problem of pursuit and evasion.
Is the best way to reach a moving target collision course or constant
bearing navigation, direct or anticipatory pursuit? What is the best
strategy for evasion? How can two airliners best cooperate to avert
collision?

From the forming and solving of military pursuit games in the early
1950’s, the present theory grew. Reflecting on the general problem of
pursuit, Dr. Isaacs realized that no one guidance scheme could be optimal
against all types of evasion, for the evader can deliberately maneuver to
confound the pursuer’s predictions. Optimal pursuit and evasion, then,
must be considered collaterally and with parity; neither could have
meaning without the other. Game theory was an essential element of the
problem.

If either craft is controlled in flight, by either a human or automatic
pilot, there must be certain quantities continually under his volition.
Such quantities are unpredictable to the opponent; a guidance scheme
based on them is not only futile but against a clever foe may be harmful.

There followed the vital distinction between state and control variables,
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viii ~ FOREWORD

which was a key step to a general formulation. At once the nature of a
strategy was clear: one makes the control variables functions of the state
variables. Not only is such an immediate generalization of the strategies
of discrete games, but it is also exactly a guidance scheme.

It soon became evident that the resulting formulation was general
enough for a wider range of material and Isaacs sought diverse conflict
problems and adapted them to his new structure. It was at this time,
roughly 1951, that the author coined the name differential games.

From the outset Isaacs emphasizes the importance of obtaining answers.
In Differential Games, A Mathematical Theory with Applications to
Warfare and Pursuit, Control and Optimization, not only does he develop
the theory of differential games, but his work is enhanced by a magnificent
range of practical military and other applications with their solutions.
This work is the culmination of fifteen years of reseach by the author
and is likely to stand for many years as the definitive work on the subject.

FrRANK E. BOTHWELL
Chief Scientist

Center for Naval Analyses
The Franklin Institute

Washington, D.C.
October, 1964

Preface

Although combat problems were its original motive, this book has
turned out to be far from a manual of military techniques. Rather the
result is a mathematical entity which fuses game theory, the calculus of
variations, and control theory, and, because of its subsuming character,
often transcends all three.

As ideas burgeoned, they dictated their own course. Combat problems
treated as genuine two-player games can be extremely difficult. (This
matter is discussed at length in Chapter 11.) Their resolution demanded
first a theory and it, one may logically say, is this book’s real contribution.

But it grew from solving problems. Each seemed accompanied by
strange, new phenomena and, as each conception was mastered, still
newer ones proliferated. The unanticipated was and still is a fascinating
aspect of differential games. Baffling novelties never seem to cease
appearing, and it is therefore yet hard to say how complete the theory is.

To the reader seeking an introduction or a superficial acquaintance with
the subject, I suggest the following program:

Chapter 1 depicts the nature and scope of differential games. It presents
typical problems, but says nothing about the mathematics or techniques
needed for their-solution.

The latter can be sensed from Chapter 3, which is devoted to discrete
models, some of them being quantized versions of problems later treated
continuously. Because these discrete problems can be solved step by step,
the reader can glimpse the concepts here without most of the formal
mathematical tools.

Chapter 2 essentially casts material such as appears in Chapter 1 in a
formal mathematical mold, but the real theory does not begin until

ix



X PREFACE

Chapter 4. Thus 1, 3, and a sketchy reading of 2 might be a good chapter
order for casual acquaintance.

The reader interested in military applications can turn to Chapter 11,
either at once or after the foregoing prelude. The questions of what can
be, should be, and may be done to attain military utility fill the early pages.
The later ones, which contain specific illustrations, require the technology
of the text for their understanding; the reader can stop when he gets there.

Possibly the lack of existence and uniqueness theorems! will seem a
heresy to some. The emphasis on the specific problem, although counter
to current mathematical trends, I feel is good and, in this case, fitting.
Without it, it is hard to see how the innovations of the theory could have
come to light. Besides, the very opulence of their diversity would seem to
preclude the above types of theorems, for such would run to unwieldy
lengths were they to cover all cases. The applications themselves have
become more diverse than I had at first dreamed, as the reader can discover
by skimming the pages.

Between its first publication—the Rand Reports [1],2 revised versions
of which now constitute Chapters 1, 2, 3, and 4—there was a lapse of
several years when I had no opportunity of giving differential games the
concerted attention it required.

An exceptional resumption occurred when I was on the staff of the
Hughes Aircraft Company. The theory of collision avoidance between
aircraft and ships is much more recondite than the unitiated might suspect.
An investigation, spurred by a series of headlined catastrophes, revealed
an unexcepted and elegant liaison with differential games. With coop-
eration rather than conflict between the two players, collision avoidance
problems cohere to the same mathematical principals as games, pro-
viding “maximax” replaces minimax. Lack of space precludes the
subject from the ensuing text; a separate publication will follow.

As far as I was aware when writing it, this work was an original con-
ception. But unavoidable delays in publication have possibly dimmed
some of the sheen of its novelty. As has happened often before in the
history of science, at the proper era the same concepts arise simultaneously
and independently from widespread investigators. This work was largely
a solitary task, and I was unaware of contemporary developments by
others.

In fact, it was just a few days after the completion of this manuscript
(in March 1963) that I first saw the book {2] by Pontryagin and others,

! The alternative used I have called the verification theorem. Its statement, proof,
and a demonstration of its use are in Chapter 4.
2 Bracketed numbers refer to reference list at the end of the book.

PREFACE xi

which deals with minimizing problems through the same basic devices
as presented herein. The technique could be classed primarily as that of
one-player differential games.

In his dissertation [3] of 1961, D. L. Kelendzeridze extended this
technique to two players, and so to some extent his work tallies with
mine.

Besides these Soviet authors, the American contributions [4] deal
largely with the logical foundations of the subject. Berkovitz applies
the calculus of variations to the strategy of one player, the opponent’s
being temporarily fixed. Fleming conceives a continuous strategy as
lying between two discrete ones. These interesting devices of mathematical
rigor appeared too late for their due incorporation in the present work.

However, another native theory, roughly contemporaneous with this
one, sounds so distinct that, while writing this book, I did not suspect
an affinity. As developed by LaSalle and others [5], control theory is
tantamount to that of one-player differential games and thus is largely a
special case of the latter. I altered two terms of my Rand Reports to the
present state and control variables in accord with control usage. The
switching surfaces of this theory are similar to the singular surfaces of
differential games. The question of controllability—what states can be
reached from a given starting one—is essentially a specialization of
differential games of kind (Chapters 8 and 9). Thus each science may
enrich the other: control problems can be extended to games by adjoining
an opposing player; the ideas of this book are applicable to control
material by suppressing one player.

However, I have retained, from the early, genetic problems which
suggested them, the names Pursuer and Evader for the two players,
whatever be the nature of the game. An ensuing drawback has been the
occasional impression of readers that the subject entails pursuit games
exclusively.

Without the allocation of time for the task by my then employers, the
Institute for Defense Analyses, this volume would not have been com-
pleted. A vital part of my huge debt to this organization is owed in
particular to Professor Bernard Koopman, now Director of Research,
for his recognition of whatever value this work may have, both as a
military tool and a mathematical theory. His willingness to accept a
new idea, despite its unconventionality, is a virtue essential to our nation
today.

To my present employer, the Center for Naval Analyses, my gratitude
is due for first bringing the work to published status as Differential Games,
Research Contribution No. 1, on 3 December 1963 and for their tolerance
in granting the time for final revisions.
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My thanks are due to Haig Kafafian of the Center for Naval Analyses
for his beneficial advice. To Professor Clifford Marshall, who, acting as
referee for SIAM, offered valuable suggestions with as much understanding
as an author could wish, and to Professors Harry Hochstadt and R. F.
Drenick of this organization, for their enthusiastic cooperation, my deep
appreciation. Also, my thanks to the many typists who coped with my
symbolism, especially to those such as Mrs. Katherine Gibbon who
mastered it.

Washington D.C. RUrUs Isaacs : COntentS

October, 1964
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AN INTRODUCTION

Figure 1.9.2

[1.9]

(a)

()]

(c)

[1.9] TWO EXAMPLES 19

mathematical model at no time gives P the right to assume that £ will

rsevere on L.

Suppose E remains oblivious of the predatory P until 2 time units have
elapsed. Alerted then, be belatedly assumes his optimal strategy, leaving
L and flecing directly away from P. These alternatives are shown on (c)
and (d), capture occurring at x’ with payoffs 9.3 and 10, respectively.
The former figure is the best that P can attain if he exploits all the knowledge
at his disposal and no more.

The same situation prevails throughout the play depicted at (c). At
each instant P acts as if he will face optimal opposition in the future.
This trait of an optimal strategy applies to both players and in all pursuit
games as we shall formulate them.

If E is known to be unproficient at detecting pursuers and we wish to
take this into account, the thing to do is formulate a new game. We
might, say, estimate a probability distribution for the time when E is
alerted to P’s presence. In the new game the payoff would be the expected
value of the capture time and P, presumably, will have a new optimal
strategy.

On the other hand, when P notes E’s oblivious course along L, is he to
construe it to mean that E has no detection or evasive capacity at all?
If so, of course, the collision course strategy of (d) is the best. Again a
revised game might be constructed incorporating an estimated probability
that E is impervious to P’s presence. But such seems a jejune approach;
this is simply a case where a human pilot’s judgment may excel a formal
strategy.

Example 1.9.2.)% Guarding a target. Both P and E travel with the same
speed with simple motion. The motive of P is to guard a target C, which
we take as an area in the plane, from an attack by E. The payoff is the
distance from C to the point where capture occurs. We take matters to be
as in Figure 1.9.2a, where P and E denote starting positions.

The optimal strategies are found thus: Draw the perpendicular bi-
sector of PE. Any point in the half-plane above this line can be reached
by E prior to P, and this property fails in the lower half-plane. Clearly £
should head for the best of his accessible points. Let D be the point of the
bisector nearest C. The optimal strategies for both players decree that
they travel toward D. Capture occurs there, and the length of the dotted
line is the Value of the game.

Let us see what happens if P plays optimally, but E does not; say he
decides to traverse the line L of Figure 1.9.2b. Always P heads for the
nearest point to C on the perpendicular bisector, now drawn relative to the

15 This is the problem posed on page 10.

.



20 AN INTRODUCTION [1.10]

current positions of P and E. Some typical positions of this point are
marked D, D', D”,.... Note the increase in the lengths of the dotted
segments. They represent the progressive penalty E pays for his poor
strategy. Each length is the payoff were E at the corresponding instant
to revert to optimal play and hence is the best that E can hope to recoup.

As P aims at the moving point D, (D', D”,...) he describes a curved
path'® until D reaches L. From then on D remains fixed, both players
move straight, and, in fact, the play is optimal on both sides. Capture
occurs at X.

The same discussion of unwarranted prognosis, given for Example
1.9.1, applies here. If P had advance assurance that £ would never leave
L, his best policy would be to travel straight to Y (where the bisector
meets L). As it is, he swerves to the right before capture. He knows that
when E is near his starting position, the upper right part of C is most
vulnerable and he moves to protect it; as E advances, the danger relents
and P moves:in for the capture.

At (c) we see P playing nonoptimally, traversing a line L. Now E
should always head toward the moving point D. The dotted segments
shrink; when E is at A, D actually reaches C. From then on, E moves
straight toward this point. He actually reaches C; nothing P can do now
will stop him. (P is at B when E is at 4.)

1.10. A PERSPECTIVE ON PRECISION

Although it may be a shock to some mathematicians, to others perhaps
a heresy, this work contains no existence theorems. In fact, theorems and
lemmas themselves appear on these pages with a much lower density than
is common. A sketch of the history of the subject’s growth explains why.

From the outset we were interested in delineating and working with as
large a class of problems as we could that would satisfy two requirements:
they would have some kinship with reality and they could be solved. Thus
our goal would be the obtaining of answers rather than the framing of
theorems.

The sought kinship did not always turn out to be severely utilitarian.
The ideas themselves, as they were gradually revealed, tended to dictate the
course of further researches. The homicidal chauffeur game is typical.
We can hardly call it a problem in applied mathematics and pinpoint its
particular application. Yet when we wish to explore the domain of
pursuit and evasion under various type kinematic constraints, bounded
radius of curvature seems inevitable. To start, we so restricted one craft;

1¢ The reader is invited to find this path for himself by means of a stepwise, geometric,
approximate construction.

[ 10] A PERSPECTIVE ON PRECISION 21

hence the foregoing game. It points the way to the problem of two craft
with curvature limitations, the “game of two cars” (Section 9_.2), which,
although the innovations of principle are manageable., entails ca'1c1'11a-
tions difficult to perform by elementary means. Yet this problem is just
what is needed in certain applications, such as that of collision avoidance
between moving craft, which lack of space forced us to omit from this
volume.

But let us see what happened when such problems were attacked with
their answers as quarry. The standard scheme of differential equations, as
will be expounded in Chapter 4, was the first significant result to emerge.
There were a number of intermediate stages, of course, where we were
often guided by discrete models, such as those of Chapter 3.

But it rapidly became forcefully evident that in many cases the differential
equations alone hardly sufficed. Various kinds of special or singular
behavior were often of dominating importance. In the playing space &,
these special phenomena most commonly occurred on surfaces. A “sur-
face” here, and in the future, means an (# — 1)-dimensional manifold in
a n-dimensional space. Besides these singular surfaces, there can also
exist such manifolds of lower dimension, but we have largely neglected
the latter both because there had to be some limits to our efforts and the
former seemed the more interesting. This because they are capable and
usually do partition & into separate regions.

The sorts of singular surfaces that come to light proliferated and each
species seemed to have its own distinct theory. A classification scheme
will be explained in Chapter 6, but it merely catalogues possible types
rather than develope a synoptic theory.

First came barriers (Chapter 8) and universal surfaces (Chapter 7) and
then others. Their special yet diverse theories will occupy many of the
later chapters. But each first arose in a particular problem; such was
always the seed of more general ideas. There were several occasions when
we thought the types, for practical purposes, exhausted. But subsequent
problems incurred further novelty. At present we do not know how much
terrain there is yet to be explored.

Thus the general view of the typical solution of a differential game seems
first that the playing space is cut by a number of diverse singular surfaces
which subdivide it into a number of component regions. Within each
component, the solution may not exist at-all, but if it does, it satisfies
certain differential equations with boundary conditions picked up at the
bordering singular surfaces. The optimal paths—such is the route of the
descriptive point x in the space when both players act optimally—when
they exist with a reasonable claim to uniqueness, may have sharp corners
when (and if) they encounter a singular surface. Besides all this, it may be
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that some component regions contain singular manifolds of smaller
dimension than surfaces, and indeed such manifolds can be imbedded in
the singular surfaces themselves.

With this disparate congeries of singular behavior, it is hard to see how |

there could be an existence theorem that would embrace all possibilities,
Any that was adequate in principle would probably require such a
colossally lengthy hypothesis as to render it pedantic in practice.

Thus we have dispensed with attempts to frame such a theorem and
substituted another idea which we feel is better suited to the ends of this
subject.

These pages will contain a fairly unified technique for getting what, for
the moment, let us call formal solutions. A large number of examples
will exhibit the process in action. The problem before us thus becomes
that of proving that for the formal solutions are, in some reasonable
sense, actual solutions.

Two items are required—a satisfactory precise definition of a solution
in this “reasonable sense” and a technique for showing that formal
solutions conform to it. The first is accomplished through the concept of
a K-strategy to be defined in Chapter 2, which also contains what is termed
the verification theorem. Judicial use of the latter, often several times in
the same problem, can be used to show that for any particular example
for which we have found the formal solution, the latter can be converted
into the essential constituent of a meaningful, K-strategic solution.

This approach, although unorthodox, seems an appropriate one for the
present subject. Of course, we cannot and do not make any general
claims as to the the universal existence of solutions of differential games. In
an earlier draft, the opening chapters contained several examples displaying
various types of nonexistence, but these pathological examples have since
been expunged in favor of the more positive cases that can actually be
solved. And this task is our real goal.

1.11. A PERSPECTIVE ON PROGRESS

The foregoing goal, actually seeking the solutions of particular examples,
has proved rewarding. Phenomena were encountered that, as far as we
know, were unprecedented. Sometimes these were extraordinarily baffling,
even the very nature of the sought solution being an enigma. We mention
a few explicit instances.

The “swerve” maneuver in the homicidal chauffeur game possesses
convincing heuristic evidence of its existence; yet what of its quantitative
features? How much should the pursuer first turn and how far go straight ?
In what direction should the evader follow and for how long? The

(1.11] A PERSPECTIVE ON PROGRESS 23

resolution of these questions came only with the disgovery of what we ca}ll
equivocal surfaces (see Chapter 10) and pothing like them can exist in
one-player games or the calculus of variations. ' '

For a long time the most baffling problem of all occgrred in the iso-
tropic rocket game, which first makes its appearance in Example 5.3.
It differs from the homicidal chauffeur game only.xr.l that the pursuer
navigates now by controlling the direction of a driving thrust of ﬁ)fed
magnitude, but this difference has very marked eﬁ'ec?ts. The hard question
was the game of kind—the conditions under which the pursuer could
always capture the evader as distinct from those where the latter f:O}{ld
always escape. It seemed intuitively undeniable that the second possibility
would hold if the fixed parameters (thrust magnitude, evader’s speed, etc.)
sufficiently favored the evader. As in the homicidal chalfﬁ'eur game, E
could sidestep whenever threatened by a faster but less aglle pursuer.

Now the playing space & can here be reduced to thr?e dimensions. The
set of points in it for which such sidestepping is p9§s1bl? appeare‘d to be
externally bounded by a surface resembling a seml-mﬁm.te, tapering tent
(for details and drawings, see Chapter 9). There was an interpretation pf
this tent in terms of sidestepping so natural that it was hard to doubt its
correctness.

Yet it was open at one end! It did not separate the space. One of two
things must be true. Either there were paths which connected the two
sides of the tent through the open end, and such implied an outré strategy
either for the pursuer to circumvent the sidestepping or for tl'le evader to
escape when he was in front of a faster pursuer a miniscule distance from
its nose, or ‘there was a way of sealing the open end of tent. The first
alternative seeming implausible, we made attempt after attempt at the
second.

Only a special class of surfaces are eligible to be seals. It seemec.l at
first impossible to pass one through the boundaries of the tent opening.
Finally, an altogether different problem—the deadline game of Example
9.5.2—suggested the answer. It is what we have called an envelee
barrier (Section 8.5III). It embodies the remarkable feature qf intransient
vulnerability, for it is comprised of paths where the evader sidesteps and
then, instead of leaping away to safety, he must remain at the very border-
line of capture throughout a positive interval of time!

With the unfolding of such ideas, we had more tools and the gamut of
solvable problems grew. But what are the limits? Rather }ate, and un-
expectedly, still another of these seemingly baming _novel‘tles app.eared.
Superficially the problem seemed of childish 51mp11c1ty;‘ in fact, it was
coined as an elementary example to illustrate another point. It has beep
dubbed obstacle tag and will be found in Chapter 6. We bequeath this

- .
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innocuous appearing game, which seems to defy all our present methods,
as a problem to the reader.

We can list a few more general tasks still to be done.

The criteria of universal surfaces (Chapter 7) have been found only
when the dimension of & does not exceed four. Not only should this be
carried further, but the case where n = 4 could very likely be improved.

Singular manifolds of smaller dimension than surfaces should be
studied.

But, most important of all, the theory should be freed from the require-
ment of full information. Some of the difficulties and possibilities are
discussed in Chapter 12.

1.12. ON READING THIS BOOK

We have stressed the value of examples as illuminants of broader ideas.
There will be many in the ensuing text, which will result in pages filled with
formal calculations.

There will naturally be a tendency for the reader to gloss over these
rapidly and to get on to new concepts. Even the author has done so when
reviewing a part of the manuscript that had been drawer bound for some
months. But the examples are too intrinsic a part of these researches for
omission. How should they be approached ?

First, we have adopted a standard scheme, which will recur often, of
writing the basic differential equations which will be explained in Chapter
4. There was a choice to be made here between the economy of eschewing
all repetition and the clarity of precise restatement, and we felt it advisable
to favor the latter. The labor of writing a few extra lines is not great
compared to that required to reconstruct an obscure meaning; actual
redundancy results only very seldom. As one acquires facility in treating
problems, he can and should make his own abridgements, but they are
best avoided in a public exposition.

Second, despite the standardized format, the examples are not routine.
Each has significant, unobvious, and nontrivial features of its own, which
are apprehended only by plunging into the analysis.

Third, we suggest that certain readers, instead of following the steps of
the text, may wish to work out the examples on their own scratch pads.
They can use as guideposts the author’s experience in having already
been over the ground to garner hints from the text. The gain is of both
instruction and enjoyment.

CHAPTER 2

Definitions, Formulation, and Assumptions

The concepts entailed in a differential game are translated into the
mathematical vernacular and thus made precise. Alternatives are moti-
vated and illustrated by examples. Several assumptions that will prove
useful in our later analysis are stated and justified.!

Throughout we deal with games of perfect information. That is, at all
times each player knows the values of the state variables.

2.1. THE KINEMATIC SITUATION

Our theatre of operations is &, a region in Euclidean n-space and its
boundary. This boundary is to consist of pieces of certain surfaces (we
mean by surface an (n — 1)-dimensional manifold®). We think of a
particular point x = {z,,...,,} to be in motion in &, its path being
governed by what we shall call the kinematic equations, abbreviated KE:

LWL, J=1,...,n (21.1)

z'j =f’.(x1, ey Xy ¢1’ ..

or more briefly

X = f(X, $, ). 2.1.1)

The functions f are given; we suppose them to be of a simple character,
and in the sequel we shall not hesitate to speak of any partial derivative
(of any order) of the f; that we have occasion to need. We term ¢ and y
the control variables. They are at all times one each under the control of a

1 Originally Rand Report RM-1399 (30 November 1954). Certain additions and
improvements have been made and several pathological examples deleted.
% Supposed piecewise smooth.
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player. Thus the motion of x is to be thought of as influenced by the wills
of two individuals. If they seek conflicting objectives—and only such

cases are of interest®—the situation assumes something of the nature of a

game. As suggested by game theory, we will speak of a particular x in & ag

a position or state; we call the x,, . .., », the state variables in that they ]

describe this state; the two individuals are the players.

The z; are descriptive in the following sense. If a play of a differential ¥
game is halted before completion, the values of 2, . . ., z, at the time of §

interruption supply all the data needed to resume the partic. We mean
that if a new partie is commenced starting with these #,, it will be tanta-
mount to the part of the original that would have occurred after the
interruption.

In particular, the values of x; at the outset supply starting data. Thus
when we use the term game, we are not speaking of a single game but of a
collection. There is a distinct game emanating from each point of &.

In general, the ¢ and y are (individually) subject to certain constraints
which depend at most on x, the typical form being: a,(x) < ¢; < b(x).
It will always be understood that we are interested only in ¢ and  which
satisfy the constraints, and explicit mention of them in the future will be
considered unnecessary.

With y fixed and x fixed in &, the set of vectors fi(x, ¢, ¥) for all ¢ will
be called a vectogram or a ¢-vectogram (similarly for a y-vectogram). A
Jull vectogram allows both ¢ and v to take all values.

For example, planar simple motion is depicted by a circular vectogram
of fixed radius (= the speed) at each point. Such a ¢-vectogram? is shown
at Figure 2.1.1a. At (b) is shown a simple prototype of a full vectogram
with n = 3 and ¢, y having one component each.

Presupposing the numerical payoffs to be introduced in Section 2.4, we
name the players:

P, controlling ¢ and minimizing.

E, controlling ¢ and maximizing.

The names relate to the Pursuer and Evader of pursuit games. Although
such games were the seeds of the present theory, its scope now embraces a
wide range of phenomena, as the subsequent examples will show. Because
we have retained the designations above, let not the cursory reader infer
that contests of pursuit and evasion are synonomous with differential
games. But pursuit games, especially in those early chapters, are fine
vehicles for illustrating points of the theory in general.

® There can be exceptions, such as in the theory of collision avoidance where the
participants cooperate.
* When a control variable has but one component, we shall omit the subscript.

2.1]
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The names, P and E for the players in general types of problems have a
Jess sterile ring than such nomenclatures as Pl.ayer I ?pd Player II, or Refi
and Blue. Our choice gives the players 1nd1v1dua11t1es—persopa11jc1e§, if
one prefers—without sacrificing a certain symmetry of roles which is, in a
sense, the essence of game theory, as qpposed to one-playgr problems:

The obvious mnemonic as to roles is in terl.ns'of pursuit games with
time of capture as payoff: P minimizes, £ maximizes. o

When working problems we shall often use more descriptive letters
than @,, %5, . . - for the state variables. Stapd}rd coordinates such as (x., y)
or (r, 0), for example, can designate a point in the.plane .ar'xc? subscripts
may be added if there are severgl points. Or we will use initial or other
suggestive letters to denote entities, such as men, munitions, and time.

Example 2.1.1. Planar pursuit games with simple motion. In both Examples
1.9.1 and 1.9.2, if we let (x, ¥,) be the coordinates of P and as (%5, y,) those
of E, and wy, w, their respective speeds, the KE can be written

& = wysin¢

Y = Wy COS b

&y = Wy sin p

g = W, COS Y.
Example 2.1.2. The homicidal chauffeur game. A natural formulation of

the problem requires five state variables: two coordinates ":ach.to specify
the position of P and E and one more to specify P’s flight direction. They

(@) (b

Figure 2.1.1

- .
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y_____xz____ﬂﬁ,;"
N

Y2

Figure 2,1.2

can be taken as ;, ¥;, %y, ¥p, 0 as shown in Figure 2.1.2. Such specify
completely and uniquely determine the position at any instant of play.
Turning to the control variables, that of £ is the simpler. One, v, is needed
to describe his flight direction as shown. For that of P, draw the line
C’PC perpendicular to P’s velocity vector. The volition of P allows him to
choose his current center of curvature at any point, such as C;, on this
line with the open segment C’C excluded (|C’'P| = |PC| = R). Typically,
we define his one control variable ¢ as R/|PC,| so that —1 < ¢ < 1.
Then the KE (kinematic equations) are

%, = w, sin 8
Y, = w, cos 6
Zy = wysin

Y = Wy COS p

A player may have more or less control of his present and future, but no
one can affect the past. Thus we interpret the left sides of each KE as a
forward time derivative,

2.2. THE REALISTIC AND REDUCED SPACE

When we construct a model from a physical prototype, the set of state
variables will generally be such as to convey a direct and forthright
description of the situation. Their number 7, the dimension of &, however,
may be larger than necessary. Often by judiciously picking a less direct
set of coordinates n may be lowered. When such has been done, we will
speak of the reduced space. We will use the symbol & for it as well as for
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[2.21
the original, which we shall call .the r_ealistic space.® 1In either case, in
eneral discussion, n will be the dimension.

The advantages of a reduced space, with its smaller number of state
variables are less redundancy and required writing. Also, if n can be made
3 or less, the convenience of geometric visualization is sometimes a great
aid in intricate situations. But there are arguments in favor of the
realistic space.

The KE, although more numerous, are sometimes much simpler. If
the problem involves moving craft, their paths in the reaiistic space are
what they are physically; in a reduced &, a very simple such motion, such
as in a straight line at constant speed, may appear almost unrecognizably

complex.
Example 2.2.1. If, in Example 1.9.2, the target area is a half-plane, say
that below the y-axis, we can employ a reduced space with n = 3 instead
of 4 as in Example 2.1.1.

If we put = x; — =, it is clear that knowledge of z, ¥y, ¥, suffices to
describe a state. The KE then become (In Example 1.9.2 the speeds were
equal; if such is desired here put w; = w,):

&= wysin¢g — wysinyp

%1 =wycos ¢

Yp == W, COS Y.

Exercise 2.2.1. In the preceding example show that if the target area is
circular, say centered at the origin and of radius R, then 7 can similarly be
reduced to 3 and write the corresponding KE.

Exercise 2.2.2. Show that in Example 1.9.1 there is a reduced space with
n=1

Observe that such reductions may not be possible if the realistic space
should lose its homogeneity, say if the speeds were functions of z, y.

Example 2.2.2. The homicidal chauffeur game. A reduced & can lower n
from 5to 2. Let us think of a map of the realistic space (the ““parking lot”)
as affixed to the car P. We can use the coordinates x, y of E’s position,
which will be x on this map, as the sole state variables. The y-axis is
always to be in the direction of P’s velocity vector.

® We prefer to leave these definitions somewhat flexible rather than tie ourselves
down by stringent requirements. The usages in subsequent examples will render the
idea clear. We have not coped with the general problem of ascertaining the minimal
possible n.

.
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4
g
lY R —>

Y

Figure 2.2.1

As in Figure 2.2.1, let P choose his center of curvature at C = (R/¢, 0)
and let d be the distance CE. Then P’s rotation about C is tantamount to
a rotation of x about C in the opposite direction with the same angular
speed. Thus x moves with speed w; (d$/R) in a direction perpendicular to
CE. Tts velocity components are obtained by multiplying the speed by
—y/d and (x — R/¢$)/d. Thus the KE are

ab=—-—V—v—lyg15+wgsinzp6
R
g:%x¢—w1+wzcoszp, -1<¢< 1

We take % as the origin centered circle of radius / and & as the portion
of the z, y-plane exterior to . (See the next section.) Note that if E
travels straight but P deviously, y will be an involved function of the time.
Such is typical of the disadvantage of a reduced space.

2.3. TERMINATION OF THE GAME

There is a surface %, called the terminal surface, which is part of the
boundary of €. When x reaches %, the game is over.

We take this form of termination as part of the canonical definition but
feel obliged to defend our motivation. Why a surface? Why part of the
boundary of £?

The termination of a pursuit game usually is capture, which at first
glance we might take to mean the coincidence of P, with E.” If the «; are

8 Not the same as the old ¥, of course.

7 Simple pursuit games involve the motion of two points, one pursuing the other, as
explained in the ensuing paragraph. We shall use P and E for the names of these points
as well as for the names of the controlling players.
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the totality of variables descriptive of the positions of both P and E, the
subset of & corresponding to capture would be of dimension <n — 1.
We reject this definition of capture on two grounds.

First, it is unrealistic. In applications, the point P or E will be some
fixed spot on a missile (aircraft, ship, torpedo, etc.) of tangible bulk,
intended to serve as an index of the missile’s location. On these grounds
alone, P and E will never coincide; but in tactical situations often all that
is required for capture is less even than physical contact—just a certain
proximity. Thus a more reasonable criterion of capture is, say, to specify
a positive / and capture occurs when the distance P to Eis /.8 The set of all
capture positions is specified by one equation and thus constitutes a
surface in &.

The second ground applies generally. The technique we shall use entails
differential equations. A surface provides just the number of dimensions
needed for initial conditions so as to obtain unique solutions. A lesser
dimensional manifold generally gives rise to singular points of the
solutions. (In Chapter 6 are some examples of games which are pathologi-
cal because of this dimensional deficiency.) Should we be presented with a
game with a terminal set € of too small a dimension, we amend it by
using the boundary of a d-neighborhood of €” for a terminal surface.
If desirable, we can investigate the limiting situation as § — 0.°

Suppose that, in the formulation of a game fresh from the physical
situation, the surface % is not on the boundary of & but is interior to &.
Locally it separates & or, relatedly, € has two “sides.” Often we will wish
to count as termination only the cases where x reaches € from a particular
side. Forexample, let us return to the above pursuit game, and suppose we
started from a position where the distance P to E < I. Clearly we would
not want to consider a subsequent occurrence of |PE| =/ as capture.
What we do here is exclude all positions with |PE| < I from &. Then ¥
will be part of the boundary.

However, there may be cases where % is desirably in the interior of &.
We will then distinguish between approaches of x to the two sides of &.
We can think of & as “slit” along % and ¥ itself as two-sheeted. Thus, in
a sense, we have restored to ¥ its role of boundary.

What shall we do if x never reaches ¥? A reasonable and quite practical
thing is to supply a stop rule. That is, we select some large value T of time
and decree that the game is over should T elapse. We can bring this
situation into the canonical picture by introducing time as a new state

8 There can, of course be cases with “capture regions” of shapes other than circular.

® When working problems by simple geometric methods, such as the examples in
Chapter 1, the coincidence of Pand E seems a convenient theoretical criterion of capture.
See Sections 6.7 and 6.8.
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variable, x,,,,. We enlarge the kinematic equations with %,.; =1 and

take for the new & the direct product of the old by [0, T]. The new % i

the direct product of the old by [0, T] as well as the part of z,,; = T
bounding the new &. We only consider plays of the enlarged game which .

start from an x with z,,, = 0.

As € is a surface, an (n — 1)-dimensional manifold, we can represent &

it by n — 1 parameters. Our standard general way of so doing is

Xy = RSy, . Sp_y) = hJs), i=1,...,n 231 &

We shall assume these functions to be differentiable. In our problems, §
at worst % will be piecewise smooth; we treat each piece with a separate :

representation (2.3.1).

24. THE PAYOFF

The numerical quantity which the players strive to maximize and

minimize in games of degree can assume a variety of guises. We prefer to

take as the standard form of the payoff
fG(x, &, ) dt + H(s). (2.4.1)

Here the function G is qualified as are the f; (as to having partial de-
rivatives, etc.). The time integral extends over the path in & traversed by
x during a partie; its lower limit (we could call it = 0) refers to the
starting point in &; its upper limit is the time of termination—when x
reaches %.

The function H is a smooth one defined on €. For any partie, the
second term of (2.4.1) is the value of H at the point of termination—
where x meets € as play ends.

Of course, if both H and G were 0 we would have a vacuous situation;
we exclude it. If H = 0, we will say the game has an integral payoff;
if G =0, a terminal payoff. Almost all practical examples are of these
two types.

As instances, pursuit games with time of capture as the payoff have
integral payoffs with G = 1. Example 1.9.2 has a terminal payoff: the
distance from E to the target when capture occurs.

For certain theoretical purposes games with terminal payoffs are
advantageous and we shall then make use of

THEOREM 2.4.1. A game with a payoff of the form (2.4.1), with G 5 0,
can be replaced by an equivalent one with terminal payoff.
Proof. Primed symbols refer to the new equivalent game; unprimed
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nes to the original. For & we take the direct product
& x L

the L meaning the doubly infinite interval (— oo, 00); it is to be the
range of a new state variable denoted by «,,,;. Similarly,

€ =% xL

and the parametrization of € will be (2.3.1) together with
(2.4.2)

Tpy1 = Spe

To the old KE we adjoin
Eni1 = G(X, 4, 9). (2.4.3)

The payoﬁ‘ will be terminal with
H'(s') = H(s) + s, (2.4.4)

Now let us consider a partie of the new game starting from x° with
components ., and terminating at a point s’ of ’. As z,,,, is not involved
in the first » kinematic equations, if we project the path on &, it will
correspond to one resulting from a partie of the old game. Conversely,
any partie of the old game corresponds to one of the new. Forz,,...,z,
as well as ¢ and y, will then be known functions of #; they can be inserted
into (2.4.3), which is then integrated with the condition #,,,(0) = 22, ,.

What is the payoff of a partie of the new game? It is given by (2.4.4),
where s’ is the termination point on %”, consisting of s on ¢ and s,. By
integrating (2.4.3) from ¢ = 0 (at x° to its final value (at 5") we have,

using (2.4.2),
I XL

the latter integral extending over the path in &” or, what is the same thing
(,4; is not in the integrand), its projection on &. Substituting in (2.4.4)

we have
Payoff = H(s) +fG(x, é, p)dt + 2,4

If we confine ourselves to starting points with 22 ., = 0, then the payoff
will be exactly that of the original game.

Note that no essential generality is lost by this confinement. As =z,
appears on the right in no KE, all paths in & which differ in starting
positions only in 2, , are translations of the same one in the ,,,, direction.

Other types of payoffs are subsumable in the form (2.4.1).
Suppose 7 (time) effectively appears among the arguments of the f;, of G,
or even of H. In the latter case, the payoff is a function of the time of
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termination as well as the place. Then we adjoin #,.,; = 1 to the kinematic 3 yital for our work is the
equations, take the new & and % as the direct products of the old by the §
full interval (— oo, o) of z,,,, and replace the argument ¢ in f}, G or H by :
Z,41. When the revised game has been analysed we discard all starting §
points except those with z, ;, = 0.

There are applications with payoffs

JINIMAX ASSUMPTION. For all u and all x in &

min max @ = max min Q.

¢ v v ¢
In all applications encountered up to the time of writing, each f; and G
have been separable, that is, of the form: function independent of o +

fTG(x, 4, v) dt function independent of ¢. In such cases the minimax assumption
0 * obviously holds.

where T is some prescribed positive value of the time (¢ = 0 means the
starting time). Such a T is essentially a state variable. We adjoin to the

KE

25. GAMES OF KIND AND GAMES OF DEGREE

When we speak of a game of degree, we mean one with a continuum of
ossible payoffs such as in the last section. A game of kind has finitely
* many, usually only two, the outcome of the game depending on whether
or not one of the players can achieve some objective. For example, in a
pursuit game the objective might be capture; in a battle game, complete
extermination of the opponent.

If a stop rule is imposed, a game of kind becomes one with terminal
payoff for which H assumes only finitely many values. The game falls
within our compass and no special treatment is required. Nevertheless,
it is often possible and desirable to imbed the game of kind within one of
degree and deal with the latter.

The solution to a game of kind may be tremendously indeterminate.
It results in the division of & into two (sometimes more) aliquot subsets
(some possibly null), one favorable to each player. If the starting point
lies in a player’s set, he can attain his objective. Then usually any strategy
is optimal for him as long as it lets him remain in his set, whereas any
strategy at all is optimal for his opponent. These ideas will be developed
at length in Chapter 8.

Let us take two species of games of kind:

T=d"n+1= -1

and take the new & as the direct product of the old by [0, o). For % we
take that part of the boundary of the new & where x,,; = 0. We play the
revised game with an integral payoff with integrand G. We utilize only 3
starting points with 2,,, = the prescribed value of T. ,
Suppose we are given a function K(x) defined in &, and the payoff is to &
be the value of K(x) at the end of a prescribed time 7. We treat this case
similarly to the preceding but use a terminal payoff with H = K. 1
Another type of payoff which can be reduced to the standard form, not 4
always but at least in simple cases, is as follows: Let K(x) be given in &, §
The payoff will be the minimum of K(x) which occurs during the play, §§
Example: In a pursuit game, how close can the pursuer get to the evader? 4§
Let &, be that subset of & in which E can cause K(x) to increase whatever %
P may do. That is &, is the set of x for which

max min Y K, fi(x, ¢, y) > 0. (2.4.5)
v ¢ 7

Let € be the boundary of &,. It is clear that if a minimum of K occurs at
all, against optimal opposition from E, it will occur on €' Thus we may
reduce matters to a terminal payoff with H being the value of X on %.
The reader can easily construct examples in which P can achieve low |
minima only by causing x to enter &’; and leave it again; in such cases the -
idea just given will present its difficulties.

A

1. A pursuit game with capture as the objective.

2. The same game with the objective capture before a stipulated time 7.
Such would be the case, say, if P were an interceptor missile with a
limited fuel supply.

For a vector u = (u,, . . . , u,) write for short

: In both cases we would lose nothing and might gain much if the time

Q= Z ufi(x, ¢, v) + G(x, $, ). of capture is made the payoff, which is taken as oo if capture does not

! ' occur. We can then expect definite optimal strategies instead of a sprawling

class delineated only by inequalities. In case 1, the strategy will not only

instruct P as to how to capture but will show him how to do it as quickly
as possible. Similarly, it tells £ how to delay it. If we have case 2, we need

1 Unspecified limits of summations will always be 1 and ». ‘
1 We are supposing all given functions continuous, differentiable, etc. In general,
€, will be open and ¥ a surface. In fact, ¢ will be defined by (2.4.5) with > replaced
by =. :
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only look at the Value® and see whether or not it exceeds 7. We will hav

solved case 2 for all possible values of T at once.
However, we do not advocate abandonment of the game of kind; 111

fact, some later chapters will be devoted to them. There are cases Where]
the direct solution is much simpler than the embedding procedure j just]
suggested and supplementary information of little value. Sometimes, too,;
a game of kind appears as a phase of a game of degree. For example, p
player may not be able to terminate favorably unless he first surmountg

some obstacle. The question of whether this can or cannot be done may

constitute a game of kind whose solution is a preliminary to that of thej

whole game.

When we speak of a game without specifying whether it is of kind or

degree, it will be understood to be of the latter type.

2.6. STRATEGIES

In the theory of discrete games, a strategy is defined as a set of decisions
for a player, one for each position that may arise. If each player chooses
strategy, the ensuing partie, and particularly the payoff, is uniquely
determined.

We recognize a somewhat analogous circumstance existing here. Th

election of a decision for each possible position amounts to a player’s
choosing his control variables as functions of the state variables. If thed
players each so select #(x) and y(x) and these values are inserted in the
kinematic equations, the latter become differential equations. Recalling'}
that the data of a game must include a starting value of x, we see that this. 3§
value plays the role of an initial condition. Thus, under reasonable cir- 3
cumstances, we may expect the paths—and hence the payoffi—to be 3§

uniquely determined.

As in general game theory, the Value of the game is to be the minimax 3

of the payoff. Symbolically
V(x) = min max (payoff).
$x) vx)

Here the min [max] extends over all allowable strategies ¢(x), [¢(x)].

We are to expect that the min max equals the max min, an expectation that §
will be justified later on. (It depends rather strongly on the minimax §

assumption of Section 2.4.)

We shall always capitalize the term Value so that we may retain literary 3§
usage of the word “value.” The Value is a function ¥(x) of the starting ;

point x, a function that will play a key role in our subsequent analysis.

12 The Value of the game, a standard term in game theory. It is fitted to our context J

in the next section.
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se concepts carry a measure of heuristic satisfaction; but we must
obe them too much with logical precision.
t each instant during the course of a play, the players are faced with a
vectogram. If we think of each as choosing a value of his control
.ables, the choice results in the selection of a constituent velocity vector
ong which X will travel in the immediate future. Thus what corresponds
/the moves in a discrete game is here a continuous and unrelenting
sice of ¢ or p. The reader may justly protest that we are demanding
of the players feats beyond human ability and of the mathematics problems
ond rigorous analysis. We shall assuage him shortly.
‘An attempt to define strategles in the form (¢(x), 9(x)) leads immediately
to difficulties. First we require assurance that the differential equations to
wthh the KE are converted are integrable. We recall that the left sides
are to be construed as forward derivatives. Now the existence criteria
r “forward differential equations” are much broader than those of the

classxcal theory and their limitations quite distinct, as the following

examples will indicate. Let us take first

z(forward derivative) = fi(x,, 2,), i=1,2

where (f3,f2) = (1, 1) when z, <0

= (0,2) whenz, =0
= (—3,0) when z; > 0.

The reader will see that this system has exactly one solution starting from
each point in the plane. Later we will find that functions of this genre are
no strangers to the solutions of differential games.
Now let us take for f:
(1, 1) whenz, <0

(—3,0) when z, > 0.

We are frustrated should we start from or arrive at a point with #; = 0.
A theory of such differential equations now claims a number of papers,3
but we have not followed this possible route in our work.
In the sequel we shall develop methods of solution. The results will
include values of ¢, y, say ¢(x) and (x), which we shall term optimal.

12 H. Bilharz, Z. angew. Math. Mech. 22 (1942), 206-215, D. Bushaw, Contributions
to the theory of nonlinear oscillations, IV, Princeton 1958; Fliigge-Lotz, Discontinuous
automatic control, Princeton 1953; J. André and P. Seibert, Archiv d. Math. 7T, 148-156,
157-165 (1956), Comptes Rendus 245, 625-627 (1957) Boletin de la Sociedad Matematica
Mexicana 242-245 (1961). Solncev, Moscow. Gos. Univ. Uenye Zapaki, 48, Mat. 4,
144-180 (1951). A more detailed exposition of the subject will appear in the *“Con-
tributions to the Theory of Nonlinear Oscillations,” Vol. V, edited by S. Lefschetz.

-t .



38 DEFINITIONS, FORMULATION, AND ASSUMPTIONS [2.6] STRATEGIES 39

When inserted in the kinematic equations, these strategies render them at §
least piecewise integrable (or integrable in the sense of forward differentia] 3
equations). Solutions (paths, the payoff, etc.) can generally be computed, §
and they appear to be optimal in the sense of rendering the payoff a
minimax. ,

But there remains a second difficulty. An assertion that, say, & is |
optimal entails knowledge of its performance when opposed by a certain
class of . What class? It must be such that the pair ¢, v will always lead |
to integrable KE and that all g representative of an actual player’s actions 3
are included. ;

Samuel Karlin has advanced an idea which obviates these troubles. A 3
strategy for P is defined as both the choice of a function ¢(x), now subject
to no restrictions (save the constraints) and a sequence o, = {f, = 0,1,
ty, . . .} of increasing values of time with lim #; = co. Such will be called a |

n we be sure that strategies subsume all the best modes of playing?
-us, for the moment, waive subtleties and accept strategies in our earlier
se. Suppose a player, say E, follows the dictates of a policy Sz* not a
stegy as we have defined it. For example, Sg*, may entail a y whichis a
ion of &;, other higher derivatives of the «; (E somehow provides for
os where they no not exist), past values of the z;, integrals over such
¢ values, etc. If E pits Sg* against an optimal strategy Sp for P,
ow do we know he will not emerge with better than the Value?

We will endeavor to reply in two ways. The first is heuristic. It is based
on the fact that the state variables are truly descriptive of the state in the
ense discussed in Section 2.1.

i To illustrate, let us consider in part a pursuit game in which P is a point
moving in a plane. Let 2,2, be his coordinates. First let him have
simple motion so that the kinematic equations are in part

8

K-strategy. In playing it, suppose P at time t, finds x to be at x* (x©® js
the starting position). Then in the interlude [z, #,,4), P holds ¢ to the }
constant value ¢(x®), ‘

Let a K-strategy, y(z) and ¢, = {#;’ = 0,4, ...} be also defined for |
E. We subdivide time by both the #; and the #/. In each subinterval both
¢ and v are constant and so the KE are obviously integrable. We build the
path, using as the initial values for each later interval the final x from the 3
previous. =

Thus for each starting point and pair of K-strategies, the path of x, and 48
consequently the payoff, is uniquely determined. We define the Value as 3§
the sup inf (= inf sup) of the payoff, the sup and inf ranging over the &
respective players’ classes of K-strategies. Such is the natural counterpart ¥
of the more primitive minimax definition given earlier in this section,

% = W COS ¢y

&y = wsin ¢,.
We claim that the only rational policy for E is to base his actions on #, and
#, alone. He might have them depend on, say, #;, 4, past values of the z,
etc. as well, such as would be the case if he endeavored to extrapolate P’s
future positions. But P’s velocities—according to the way we have framed
the problem—are at all times subject to abrupt change without notice.
It is impossible for E to rely on any prediction or indeed to derive any
constructive knowledge from anything other than =, and =,.

Let us now make P’s motion a bit more complicated. We suppose that

now he regulates the acceleration ¢;, ¢, (subject to some bounds that we
will not mention). The KE in part now might be

It is hard to see, in the world of actuality, how a sequence of decisions & Ty =
could be anything but discrete. Thus the K-strategies seem a step nearer § #y = x,
to reality. 3 &y = ¢

We will speak of the ¢(x)[(2)] which is a constituent of K-strategy asa ¥ ,
tactic 14 E = by

It is manifest that, in general, the K-strategies will not yield optimal § Now P can no l(‘mgel: abrqptly switch velocities, and there are sound
strategies but only e-optimal strategies, that is, strategies that will attain g grounds for E’s basing his p_ohcy on them. But the velocities are 3, z, and
within ¢ of the Value (this being done, it would seem, by increasing the §§  2Pppear among the state Yarlal?les. However, the same argument as before
fineness of the temporal subdivision). 4 shows that E could be misled if he based his decisions on, say, P’s accelera-

tion.
1 We can proceed th i i
14 The terms strategy and tactic have nothing to do with the military lexicon. The § of moti I;_ ;ed du?’ c}reatmg a _Cham of more and more complex types
former, since its introduction by von Neumann and Morgenstern, has become standard § otion for £ and, m Iact, can l.ntrOduce many variants and Oﬁ:ShOOtS
in game theory and we use an obvious extension. We introduce the latter when speaking alopg t.he way. In each case we single out those data of the motion on
of K-strategies because an alternative word is convenient. Its usage in this book will § which it appears E can rationally rely when making his decisions, and in
be quite limited. 2 each case they appear among the state variables.

PO
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The second reply is mathematical. Suppose P plays Sp and E plays Sy4
from some starting point. On the resulting path we will have the ;
arising from Sg* defined as a function of 1. Wetake theliberty of supposm
that this function is piecewise continuous. Then there will be a strateg 2y
Sy for E which will agree with Sp* whenever a partie results in this sany
path. Thus E will reap the same yield if he plays S or Sp* as long as
adheres to Sp. As Sp is optimal, E cannot do better than the Valug3
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2.7. CANONIZATION OF THE VECTOGRAMS

In our science, as in other fields of analysis, we are free to make certait
transformations on the variables involved. For example, if % is a smootf
surface, we can select the state variables so the € lies in the surface whegd
z, = 0. But we wish to speak here of transformations on the contrg
variables which bring the vectograms to certain canonical forms that wj
later prove convenient.

We can, of course, and should assume there are no redundancies: on g
¢- vectogram, say, we choose coordinates (the ¢,, . . ., ¢;) so that to eaclj
velocity in the vectogram there corresponds but one set of numericaf
values. It follows, then, that 1 < n. L

Another rather obvious requirement on meaningful vectograms is tha
they permit sufficient scope to the navigation they allow x in &, rather thay
confine x to a lower dimensional subset. In this event we could reformu.
late the problem taking for & this subset.

Example 2.7.1. Letn =3, A =1, « = 0. The KE are

x = a(x)¢; + B(x), -1<¢ <1
with y(x) = a X 8 # 0. Then, if
yecurly =0

a known result of classical analysis tells us that & is covered by a family
of surfaces such that everywhere the vectors « and f§ lie in the tangent
plane. Then x must always remain in the same one of these surfaces from
which it started. We can use this surface for &.

We will say a vectogram is convex if, whenever v,, . . ., v, belong to it, §
so does 2?=1Civi’ where Ci > 0’ Z?=1Ci = 1.

Less trivial than the foregoing is the

CONVEXITY ASSUMPTION. All ¢- and y-vectograms are convex.

Should this assumption be violated, there may be no solution. We do.
not reject the game but replace it by another in which the ¢- and y-vecto-
grams are the convex hulls of those of the old; that is, the new vectograms- 4§
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x°

Figure 2.7.1

are the smallest convex ones which contain the old. If the new game can be

solved, its solution will supply the essential information about the old.
An example will clarify matters. The reader will see how to apply its

idea generally.

Example 2.7.2. In this game y does not appear, so that it really is a
minimizing problem rather than a game. Here & is the part of plane above
the curve € of Figure 2.7.1. "The vectograms are the same for all x; one is
sketched. Let M be a high point of €'; P is to start from x°, directly above
M, and reach % in the least time. Clearly a solution will entail a zigzag
path arising from an alternate use of P’s two extreme velocities. There will
be many solutions.

Example 2.7.3. Let L be a vertical line through M. We alter matters by
letting the vectograms preserve their form but letting them decrease in
magnitude with the distance from L. Then clearly P does the better with
finer zigzags which stay closer to L. There is now no solution.’®

Perform the alteration described above, replacing the vectograms by
their convex hulls. The game now has a solution: P traverses L to M.
We see in what sense this solution is approximated by those of the unaltered
game. Thus by replacing vectograms, when necessary, by the convex hulls
we obviate troubles of the above type. It is easy then to interpret the
original game.

If ¢ corresponds to a member of a ¢-vectogram, then c$, where 0 < ¢ < 1,
is a convex combination asserted to be also a member by the convexity

18 The Value however exists.

EYr
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assumption. But it turns out that such fractional multiples are seldon
of importance in practical problems. If the motion of a craft is involveqy
decisions as to the best direction are the real problem; optimal strategj
almost always dictate the maximal allowable speed. Therefore, in map
of the problems to come, the vectograms shall not be convex in thj
fractional multiple sense (the reader can always make them so by intro
ducing a new control variable like the c above, but he will find its optima ’
value to be 1), but only in the sense of closure with respect to vectors off
distinct directions. 3

Somewhat similarly we have the

CLOSURE ASSUMPTION. All ¢- and y-vectograms are closed.

The grounds are similar to those of the last assumption. If there were
convergent sequence of members of a vectogram that incurred increasingly;
favorable payoffs, technically the game might lack a solution. Therefore}
it is wiser to include the limiting velocity, which we presume to be optimal.§
in the vectogram. Thus we circumvent difficulties of this kind.

As before, when faced with a game with improper vectograms, herg}
meaning they are not closed, we simply adjoin their closures and proceedy
with the analysis. 3

We may consequently assume that the lengths of the vectors in any,
vectogram are bounded, for, if not, the closure assumption would imply
the existence of infinitely long vectors. If these were actually used in an§
optimal strategy, we could soundly judge the game to be pathological or
trivial. If they were not, we could excise them and some neighbors from}
the vectogram without effecting anything essential.

The latter two statements together imply

We may assume all ¢- and yp-vectograms are closed and bounded ami
therefore compact. 2

We come now to the useful result:
The constraints on the control variables may be taken as constant.

That is, for example,

with a;, b; independent of x. For we know that we may assume eachf ]
vectogram to be a compact, connected (because of the convexity) set, and, §

from our general hypothesis as to the f;, these sets vary smoothly with X. §
We can then find a smooth mapping of these sets of vectors {¢;, ..., 9,
into, say the unit cube of Euclidian A-space, which is also a smooth’
function of x. Using the coordinates of the cube as new ¢, we will have §

4, < $,<b WAV |
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) (with a; = 0, b, =1, but the values do not matter). The -

grams can be treated similarly.

n a game with terminal payoff, as only the location of x at termination

’ftérs, a change of time scale makes no effective difference. We can even

‘1e this scale change locally, varying it from point to point in &. For-

v this is accomplished by multiplying the right sides of the kinematic

ations all by the same positive function of x, that is, the typical KE is
ced b

e = ) % )

“s clear that as long as u(x) > 0, the curves of the paths are unchanged

© d hence the same strategies yield the same payoffs as before.

"' As we may assume the vectograms bounded, we can take u(x) such that

t each x its product with the longest member of the full vectogram is

‘sunded throughout &. Thus we may assert

In a game with terminal payoff we can arrange, without effectively

changing the game, that the vectograms are uniformly bounded through-

out £.

28. A LEMMA ON CIRCULAR VECTOGRAMS

The following simple result will have utility in many of our later
problems.

LEMMA 2.8.1. Let u, v be any two numbers such that

p = Ji2 + 2> 0.
Then
max [min] (ucos ¢ + vsin ¢)
¢ ¢

is furnished by ¢, where
cos§=+[-1%, sind=+[-]"
p P

and the max [min] itself is .
+[—1p.

Proof. The quantity in round parentheses is the inner (scalar, dot)
product of the vectors (1, v) and (cos ¢, sin ¢) and therefore is the pro-
jection of (u, v) on the ray through the origin having inclination ¢ with the
u-axis, The maximum then occurs when the ray lies along (%, v) and the
minimum when its direction is precisely the opposite. Such correspond to
the ¢ asserted. The maximum [minimum] is the length [— the length] of
the vector (u, v), which is p[—p]. :

-t



CHAPTER 3}

Discrete Differential Games

3.1. INTRODUCTION

Like many problems of mathematical analysis, differential games can be.
quantized into discrete models. The smooth, continuous processes can 4

be replaced by sequences of individual steps or moves.

One objective is the application of numerical methods by successive
calculations. With an automatic computer at hand, this may be a tempting §
road to the solution, especially when the analysis is difficult. But generality }
is lost; we cannot see how the answer depends on the starting conditions $
and on the various descriptive parameters without calculating a vast pro- #&
fusion of cases. Moreover, as some of the following examples will show,
many mathematical figures, such as singular surfaces or even the unique- §

ness of the optimal strategies, may be obscured or lost.

We do not stress this aspect here; in particular, we do not touch the ;f
question of convergence: proofs, that with a finer mesh, a discrete solution %

approaches the continuous one.

Our aim is rather intellectual adumbration. At this point discrete games
can motivate and clarify many of the ideas to come. In the next section
we show that even the general two-player zero-sum game with full in-
formation bears parallels to our theory.

We then go on to examples which are more literal quantifications of
differential games. In Section 3.3 we present a battle game where each 2f

player strives to annihilate his opponent’s forces. It might be interpreted
militarily or, say, as two commercial firms each striving to force his

competitor out of business. We use it both to illustrate a game of degree, »f

4

THE GENERAL DISCRETE GAME 45

ere the payoff is the force surviving on the victorious side or a game of
4. where the objective is simply extermination. Continuous versions
tut . . .

such games will be easy for the reader who has mastered the ideas in

gbsequent chapters.

“Two pursuit games follow. The first, that of the hamstrung squad car,

ctually is better adapted to the discrete rather than the continuous
format. The next is the ubiquitous homicidal chauffeur game; certain of

: ts fine points come to light even here. The failure of others to do so is

typical of the limitations of discrete methods. The final section sketches

-4 step-by-step technique which requires only a partial quantization.

The veteran mathematician may skip these examples without loss of
jiteral instruction. They contain no material specially required for later
use; their purpose is a preview, possible because the difficulties of analysis
are sidestepped. On the other hand, the less mathematically sophisticated
reader will find in this chapter the spirit of our context, through analogues
of ideas and parallels of nomenclature, even if he reads no further. How-
ever, the general discussion of the solutions in Section 3.2 is basic to the
philosophy of game theory.

Finally, let us note that it is sometimes advisable to reverse the pro-
cedures of this chapter, that is, when confronted with a game with discrete
moves yet with a certain logical coherence,' we might gain by replacing it
by a continuous model. Such is tacitly done, for instance, in the later
Examples 5.4 and 11.9.

32. THE GENERAL DISCRETE GAME

Our study in this book is of two-player zero-sum games with complete
information. Any such discrete game can be diagrammed—the so-called
extensive form—as the sample shown in Figure 3.2.1. Rumination will
lead to some instructive parallels with differential games.

Each position is represented by a circle or rectangle and from each it is
possible to go to certain others along the connecting lines in a downward
direction. Small circles indicate that it is P’s move, that is, with the
minimizing player rests the decision as to which subsequent position. The
squares pertain similarly to E. Thus the topmost circle is the starting
position; it is P’s move and he has three choices, all of which give the
next option to E.

We can think of a counter being placed at the starting position and the
partie consisting of its successive moves. The occupied circle or square
is the discrete counterpart of the state x in a differential game. Ultimately
the counter or x reaches one of the flat rectangles which represent terminal

! The exact type is difficult to specify. We discuss this point later in the chapter.
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(3.21
ositions; play is over and the number in the rectangle is the payoff.
These final positions correspond to the surface #'; it is clear that we have
here a “terminal payoff.” We learned in the last chapter that any differ-
ential game could be so formulated; we will see soon that discrete games
can have other representations, and the present one is the particular type
that exhibits terminal payoff.

Chance moves can appear; then the decision as to the next move is
made by a random device with certain given probabilities rather than by P
or E. We have included one such position; it is the large circle labeled C,
and the probabilities of the three possible ensuing positions are marked
on lines to them. This random element requires us to define the Value as
the minimax of the expected payoff.

Let us now solve the game. From the position labeled a, E has two
choices. Both lead to termination and the payoffs will be —2 and 0.
His goal being the maximal payoff, he will clearly prefer the latter; let us
label this square with the number 0. From the position b, P has the same
two choices, but hewill select —2 and this is marked in the circle. From c,
E has three choices; the payoffs being the —2, —2, 0 as marked; the last
is max and so square ¢ is marked 0. In this way we work upward from the
terminal states until finally the starting position is labeled; this label will
be the Value of the game. The optimal strategies are represented by the
lines that lead to positions marked with the Value.

The chance state C is, of course, an exception. When its three ensuing
positions have been numbered, we write in C their expectation, here a
linear combination of these numbers with coefficients, 4, %, 1.

Exercise 3.2.1. Complete the solution and show that the Value of this
game is —3/2.

Exercise 3.2.2. Start to construct a diagram in the manner of Figure 3.2.1
for the game of tic-tac-toe (tit-tat-toe, oughts and crosses). We say
“start,” for the full task will be tedious and long, but we wish to emphasize
exactly this point.

We will now glean some insights.

1. The numbers that were marked in each position constitute the
analogue of the basic function in differential games which bears the
term V(x).

Observe that each position in the diagram can be regarded as the
starting point of a subgame. Retaining only positions which can be
subsequent to the given one by means of some series of moves starting
from there, and erasing the rest, we have just the figure relevant to this
subgame. In other words, the subgame is what follows if x were placed
on the arbitrary given position and the players began playing from there.

Figure 3.2.1

- .
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Similarly, in differential games, ¥(x) is the Value of the game that
results if a partie commences from the point x.

2. The optimal strategies are intimately and simply related to F(x).
When E[P] makes a decision as to his move from a position, clearly his
best choice is that which maximizes [minimizes] V(x?) where x* ranges
over the positions immediately ensuant to x.

A continuous version of this idea dominates what we will soon call the
main equation in differential games. It is a first-order partial differential
equation in V(x) and is based on the limit of the transition between
neighboring x which renders minimax ¥ on the later one.

The route of x in the discrete game, when play is optimal, corresponds
to the optimal paths in a differential game. The latter satisfy a system
of ordinary differential equations and are characteristics of the main
equation.

3. Our procedure in solving the discrete game was to start at the
terminal position and work backward, obtaining successive evaluations of
V(x). Tt is hard to conceive of any alternate principle, for at the outset ¥
is known only at the terminal states.

There is a counterpart here too in differential games. We will use the
terminal surface € as a seat of initial conditions to integrate the afore-
mentioned differential equations for the optimal paths in &. Such will
motivate our reversal of time and the retrogressive form in which we will
later obtain our integrals.

4. Our last point is much more general and more difficult to express
precisely. An analysis of a game such as is portrayed in Figure 3.2.1 can
hardly be systematic; there appears no other recourse than proceeding
one position at a time to exhaustion. The importance of this lack of
pattern becomes manifest if we imagine the figure vastly enlarged.

If the reader has attempted Exercise 3.2.2 he will see that, even for a
game of childish simplicity, the diagram, even though manageable with
sufficient diligence, is already formidable. What would it be for a game
such as chess? Each position essentially corresponds to a permissible
arrangement of the chess pieces on the board? and the connecting lines to
all possible legitimate moves of the appropriate player. The magnitude of
the diagram would be astronomical, that of the solution easily beyond
the scope of the mightiest of present-day computers.

On the other hand, consider the game diagrammed in Figure 3.2.2. The
regularity is evident. A pattern of answers emerges concurrently with
the act of solution. In fact, we can easily prove by induction on # that the

% Certain auxiliary information is requisite too. For example, two states of a game

with identical piece arrangement, but in only one a forfeiture of the castling privilege
through prior moves, would have to count as two distinct positions.
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Figure 3.2.2

values of ¥ in the uppermost four boxes are

2n 2n+1
2n—1 2n.

Yet it is obvious that a segment of this diagram, capped at the top with
some simple configuration that supplies the requisite opening move, would,
if n were sufficiently large, be of greater magnitude than that of chess.?

The distinction is one of pattern—of inherent logical structure. The
latter game yields to the techniques of difference equations or recurrence
relations because each position is related to its neighbors with a certain
uniformity which is lacking in games of the chess type.

But such uniformity is the very stuff of mathematics. A planetary orbit
is calculable in principle just because at every instant the same law of
Newton holds. Stock market prediction is not because we cannot find a
like logical system governing it.

# The reader should not be misled by the long, narrow configuration of Figure 3.2.2
which makes it appear “one dimensional,” whereas 3.2.1 seems more “two dimensional.”

This is beside the point; it is possible to construct “multidimensional” versions of the
former figure relating to games similarly solvable by systematic recurrence.

-
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We hope the spirit of these ideas is clear; a sharp delineation is difficult.
Our statement that chess does not possess the type of logical structure
rendering it amenable to mathematical analysis does not imply that chess
is an erratic, illogical game.? Rather it means that analysis apparently
can but construct piecemeal chains of cause and effect; the mathematician
appears to be able to do no more than emulate the deductions of a
competent player.

The quintessence of differential games is not its use of the classic tools
of analyses, as the term “differential” might appear to imply, but its real
concern is with games with an inner logical structure. The analytic
techniques, such as differential equations, might be replaced by discrete
but systematic methods once the continuous game is replaced by an
appropriately quantitized model.® In either case, there is a connection
between contiguous states that maintains a uniformity of relationships
throughout a full phase, if not all of, a partie. Such is what makes the
theory possible.

3.3. BATTLES OF EXTINCTION

In the simplest form of these games there are but two state variables,
z and y, which are the forces of the two antagonists. The game is over
when either is reduced to zero, the payoff to the survivor being the amount
of his own force remaining.

For & we take the first quadrant of the z, y-plane; € will be the union of
the positive 2- and y-axes. If y pertains to the maximizing player E, then
the H will be —x on the y-half axis and ¥ on the x-half axis.

The options of the players, as expressed by the “kinematic equations,”
should be, say, between moves that bring the partie to termination more
rapidly or deplete the enemy faster. The effects should be greater with his
own greater or the enemy’s lesser strength.

A good simulation of any aspect of reality is hard to achieve with only
two state variables and the above kind of moves. We do not claim any
realistic prototype for the example below. But for a simple illustration of
the discrete method, we must keep the dimension of & low to avoid a
superabundance of positions. Such would be unnecessary, of course, if
the model were solved by an automatic computer.

In the following example we have what might well be a quantized
version of a differential game as just described. It is not diagramed by

* Or that it will not yield to techniques other than those of traditional mathematics
such as self-learning computers.

& Such models are sometimes closer to reality, as the aforementioned Example 5.4,

War of Attribution and Attack. In such cases, the advantage of the “differential”
approach may be rightly viewed as one of efficacy rather than versimilitude.
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the scheme used in the last section, but its format is closer to our standard
one of a differential game with terminal payoff.

Example 3.3.1. A simple battle of extermination. The playing space & is
the set of vertices of the reticulated first quadrant of Figure 3.3.1 with the
standard =z, y coordinates. Its left and lower boundary points form %
(where one or the other forces is zero as discussed above); the values
of H are as marked. The vectograms are as sketched around the border.
For example, ify = 0, 1, 2, or 3, E may make either of the two “knight’s
moves” as shown in the lower left vectogram; fory = 4, 5, 6, or 7, he has
the choice of the three as depicted immediately above; for y > 8, he
employs the uppermgst vectogram.

Moves are made alternately. We think of a counter x placed on any
lattice point (for as in the continuous cases, each point of & may serve as
a starting position). The players move alternately by selecting one of the
displacements of x allowed by the appropriate local vectogram. The
partie ends when x reaches or crosses €. The payoff is the value of H at
the point nearest to the point where the move, as represented by a straight
arrow, crosses %. A midway crossing scores the higher in absolute value
of the two adjacent points.

We solve this game, as before, by finding V(z, y), the Value, if z, y is
the starting point. But a minor difference from the general case intervenes:
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either player may have first move. Thus two distinct ¥ are required.
In our subsequent diagrams we shall write the ¥, when E has the move,
above (and to the right) of a vertex and for P, below.

We begin by locating those points from which termination must occur
after one move, regardless of the player’s choice. We can write in the ¥
for the moving player, as it is his best possible outcome. The result is as
in Figure 3.3.2. For example, at the point (1, —1),® the two moves
available to E lead to meeting % at (3, 0) and crossing it at (3, 0); the two
payoffs are 3 and 1; E picks the max = 3 and we write it over the vertex.
On the other hand, P’s two choices lead to payoffs of —1 and —2; we
write the latter, the min, under the vertex. We can fill in nothing yet on
a vertex such as'(3, —2), for both of E’s moves do not reach %, but from
(4, —2) all three possibilities do and the max is 6.

This step is an instance of the general procedure, which is governed by
the rule:

When from a point x, the V relative to his opponent is known at all
points to which a player may move, his V at x is the max (if he is E)
or min of these V.7

Successive application of this rule determines fully the two V. For
example, if P is to move from (5, —1), his move carries him to (3, 0),
where V = H = 3, or to (4, —2), where ¥ (for E) = 6; the min 3 is thus
his V. After (5, —1) is so labeled, both outcomes of a move for E from
(3, —2) are known and it may be treated similarly. Proceeding thus leads
to the results in Figure 3.3.3.

8 We will use the values of H as coordinates.
7 Of course, on €, H counts as V¥ for both players.
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The optimal strategies are known at once from the two V; a player
makes the decision implied by our rule. Figure 3.3.4 depicts two instances
of optimal play with the adjacent starting points (11, —14) and (10, —14)
at which ¥V (for E) = 4 and —3. The solid arrows denote the moves of E;
the broken ones, those of P. If at a point a player has more than one
optimal move, all are shown; thus the figures include all possible optimal
strategies from the selected initial points.

There is one difficulty, minor in this case, but perhaps more serious in
possible variants, which we leave to the reader as

Problem 3.3.1. Observe that in E’s lowermost (Figure 3.3.1) vectogram
and P’s rightmost one, there is a pair of translations equal and opposite,
namely, one space horizontally and two vertically. For some parts of &,
where both these choices are admissible, a possible outcome is that each
player perseveres in these choices so that x oscillates between two points
and the partie never terminates.
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The rules must be amended. Let us do so simply by assigning 0 as the
payoff of never ending play.

Show, then, that optimal play will always end and show how to find
the V at the critical pairs of points.

Investigate the matter generally: find criteria for such nonterminating
oscillations to be optimal.

Problem 3.3.2. Note that in the upper chart of Figure 3.3.4, P often has
choices of optimal moves, while E’s is unique. In the lower chart, on the
other hand, E appears to have the greater freedom.

Discuss, in a rough way, what factors govern the amount of choice
allowed a player under an optimal strategy.

(3.3] BATTLES OF EXTINCTION 355

Suppose we were not interested in the number of survivors but simply
wished to know which player—when striving for the contrary end, of
course—becomes extinct first. That is, we have a game of kind in which
the player who exterminates his opponent is winner.®

Of course, the solution just obtained includes that of this new game;
we have but to note the sign of ¥ and otherwise disregard its value. But
is there not a more direct method which does not require coverage of all
of €7 There is, and as it adumbrates the ideas of Chapters 8 and 9 on
games of kind, we shall look into it.

For definiteness we shall suppose E to move first. Then there is a set
of starting points from which he can win—force x to the positive y-axis—
and another from which he can be beaten. We should expect these two
sets to be separated by a third set for which the outcome is a draw—x
reaches the origin under optimal play. If we knew this third set, then, the
problem would be solved. We can expect it to be sparser than the other
two; in fact, it ought to be a slender array whose configuration resembles
a curve through the origin. It is the counterpart of what later, in the
continuous case, will be called the barrier.

Example 3.3.2. The battle of extinction: game of kind. This game, just
described, has the solution shown in Figure 3.3.5, where the indicated
vertices constitute the barrier.

To each encircled point (other than the origin) of the barrier there is
attached one or more arrows indicating E’s optimal strategy.? The reader
can verify that, if E makes any such move, then, whatever move P may
make in response, x will not be brought below the barrier, nor can it
reach the x-axis, save possibly at the origin. Suppose P brings x back to
the barrier; E replies with another indicated move. As long as this alterna-
tion persists, as the reader will easily see, x will be forced leftward. Should
a move of P deliver x to a point above the barrier, then E can keep x from
going below and compel it leftward, if anything, even the more strongly.
Thus x must reach the y-axis; the outcome will be either a win for F or a
draw.

Further, the barrier is the lowermost “curve” with the above property.
This remark illumines the construction: suppose barrier points have been
constructed on the lines where + = 0, 1,...,n To construct the next,
with # = n + 1, we test the points on this line for the requisite property
starting at the bottom and working upward, trying each eligible move of £

8 Checkers is essentially an example of such a recreational game.
® In Chapter 8, we shall learn that in games of kind optimal strategies are defined only
at points of the barrier.
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Figure 3.3.5

in each case.!® The first that passes the test is our new barrier point. The
procedure begins, of course, with the origin.

This construction makes clear the asserted lowermost property. In turn,
this implies that if the starting point is below the barrier, P can force a
win. 1

Exercise 3.3.1. Construct the barrier if P has the initial move.

34. TWO DISCRETE PURSUIT GAMES

As the last example, these two will mimic the format of continuous
differential games. They will also illustrate the compactness gained by
using a reduced space.

The first game, even when removed from context, appears as a neat and
charming bagatelle.

1% In practice, we need not be this pedantically thorough; it is clear that no barrier
point can be lower than its left neighbor.

' Note that the barrier lacks the purity promised in the preliminary discussion.
It is not comprised entirely of points for which the outcome is a draw but contains many
which win for E. Such does not happen in the continuous case.

unbo
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A mple 3.4.1. The game of the hamstrung squad car. The squad car P
. x‘;lasing a car E of criminals through a city whose streets form a perfeqt,
. unded square lattice. Even though P has twice the speed of his
uarry he must obey the municipal traffic rules, which prohibit left and

' U-turns, statutes which E disregards.

In our quantized version the players alterpately perform discrete moves.
If E is at the vertex E of Figure 3.4:.1, on his turn he may move to any'of
the four adjacent vertices of the lattice as shown. Suppose Pis at the point
0 and has come from C on his previous move. Qn his turn he may either
move two spaces forward to 4 or execute a right turn to 'B. Captur.e
occurs when P and E coincide or are adjacent, that is, if Pis at O, E is
captured if he is any of the nine points labeled X. Flr}ally P has the first
move, and the payoff is the number of moves of P untl! f:apture. .

Let us adopt a reduced space. We take O, P’s position, as origin of
discrete rectangular coordinates with the vector CO f)f his previous move

ointing along the y-axis. A position is th‘en described by a point x =
(x, y), the latter being E’s coordinates relative to P. We may thl?’lk of a
full-scale map of the city attached to the roof of the squad car, with x as
the point of this map immediately over E.

The disadvantage of a reduced space is that moves generally become
more complicated.® Suppose that P moves two spaces forward to A';
such is equivalent to moving x (as on the figure) back two spaces to 4".
Now let P turn right to B. Orienting ourselves along the vector OB, we

&

X=X~ X
' 0)x
A G
|

C
|
|

Figure 3.4.1

12 In the continuous case, it is the KE which suffer similarly.

.
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see that the x illustrated is four spaces to the left and one forward of B,
Thus the effect of the move is to transfer x to B’, where these coordinates
hold in the original scheme. :
Now for the solution! Again we achieve it by successively calculating 3
V(x) from the capture region outward. We will label the vertices with 2§
their values of ¥ as we go. :
We begin by marking the origin and its eight neighbors 0, for at these %
points P captures with 0 moves. Inasmuch as he moves first, we can
immediately spot the points where ¥ = 1; they are marked on Figure |
3.4.2.
From here on, the process assumes generality. The next step is to |
delineate the points hemmed in, from E’s viewpoint, by 1’s or 0’s, that is,
the points x such that if E were at x all four of the points to which he :
could move have already been marked, at least one of them with a 1.
These points are enclosed by the broken line in the figure. Next we spot -
the points not previously marked such that a move by P will bring them
to one of the enclosed positions. There are two such points (a) if P moves
forward and twe (b) if P turns right. The four points, a and b, are labeled 2.
Let us verify the last step. If x is at one of the points a[b], P can bring x
to the enclosed set by moving straight [turning]. (Such moves are part of
his optimal strategy.) It is now E’s turn; his optimal strategy demands
that he shift x to a point with the highest possible label, which here is 1.3
It is now P’s move, and we already know (note the induction!) that he
can capture x on such a position in one move, making a total of two.

31t is even better for E to move to an unlabeled point if he can. Our construction
makes this impossible here.
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. The ensuing steps are similar. Suppose the points with V' =0,1,...,7
i,ave all been found and marked. Let S consist of the points x such that

" all four neighbors of x are marked, with at least one mark an n. The
points, if any, not already marked and such that one move of P brings

them to S, are now marked 7 + 1. ‘ . o '

The reader who executes this construction for himself will enjoy a mild
and diverting task. When ¥ = 11, he will have constructed Figure 3.4.3.
He will find that no further steps are possible; the configuration is com-
Plitf‘e:che game is started from an unmarked point, E can permanently
evade capture. (What is his strategy ?)

Research Problem 3.4.1. If we increase P’s “speed” by letting him move 3
or more spaces on a move instead of 2, is it still true that there are starting
oints of permanent escape for E? The capture region should similarly be
enlarged to eschew the possibility that P pass over E without capturing
him.
Exercise 3.4.1. Chart some trajectories of optimal play in the realistic
space.
Example 3.4.2. The homicidal chauffeur game: a discrete version. Our
discrete version of this game will be played on a triangular lattice, but in
most other respects the ideas of the last example persist. Again moves are
made alternately, with P going first; he moves two spaces at a turn,
while E moves one.

8 11
5 8
3 4 7 10
2 3 4 7
1 1 1 3 6 9
1123
00 0 11 5 8
o(i))—o-»1123
90 0 0 1 1 3 4 5 8
,7232347811
107 4 3 6 7 10
8 5 6 9
1 8

Figure 3.4.3
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; If P is at O in Figure 3.4.4 and has come from C on his previous movc’; <£|3\5
then he must choose between the three moves which take him to A4, B, or} ~ e |> 5
D. In this way we have a simulation of a fast pursuer subject to a limited; 4| >4I1\ [ >5\
curvature of path. On the other hand, E may move one space to any o \<|3/‘|°’\ 3/?\1/?\ 5 \6\ ~,
the six adjacent points as shown. E |>2<| >3< |>4<l>5<[/6
Capture occurs, if P is at O, when E occupies O or any of the six con.} 2/?\'1/,2\£/ ‘T’\L/T\l/?\é
tiguous points, all labeled X in the figure. Again the payoff is the number |>1< |>1< |>2< |>3< |>5< [ >7
of moves of P until capture. /}\Il/'%\ll/}\ll/T\:l%/‘T\ls/?\;/?\g
Once more we emplqy a reduced space in .WhICh P is at’the origin O | > 1< [ >0< | > 1< l > 2< l >4<, > 6<|> 8 | 1oL
his prior vector CO being on the vertical axis, and x is E’s affix in thig] 1| o\o/?\{/}\ﬁ/?\i/?\é/f\é 11\12
coordinate system. We leave the reader to apprehend the displacements} 0< > 0<| S1371>3 < | > 5| >7 <|
of x in response to the three possible moves of P. 1|3 /ﬁ\1|3/1|3\1|2>13\¢|; /1\ | /e[s\ | /zlg !
The technique of solution is the same as that of the previous example PS137 5107 \1|1/ I~ 5<?> 6<|7>8\[
. . . . - - -
we determine ¥ starting from the capture region (the 'x) an<.i working} | \1|2 1|1;111\l)>?/\6|3 /elj\|7 /|7\%|3 /gla
outward. The points where ¥ = 0 or 1 can be located immediately. Asg - \1|1/ N TSe T TS TS0
before, when we know the points where ¥ =0, .. ., n, we first locate the g 10 ]>ll< ] >10< |>6<|>7< [>8< |>9/
set S of x such that if ¥ is at x, for all six contiguous points ¥ < 7 and | >l >o 1 > () =9 (| >8] 29
i ; : s | >e 1 28 | 27| 28| >9
max V = n. Then the set where ¥ = n + 1 are those points to which no ¥ o | > ] /8\| >e1>9(]
has been previously assigned and, for some one move of P, can be brought? 92 | /10\| 9 | S8 | >o_ | C10 13
to S 1 1|0\ |1/1°\| /9\!;/?\1'0/10
17 | > 1] 7
| S127 | Sl ™o
F e
12 | 212 |
< 137 12

/\

Figure 3.4.5

What results is shown in Figure 3.4.5. This time all lattice points are
marked; P can always capture. Because of symmetry, one side is omitted.
Observe the successive values of V. Near the top of the chart they occur
consecutively in orderly concentric rows. The ends of each row curl
around that of its predecessor, and this happens more and more until
V = 9. The row of 9’s extends right across the bottom of the chart leaving
a cavity near the tail of the double arrow, which is filled by Vs ranging
from 10 to 13. These entries consist of the starting points that lead to
optimal play with a swerve (Section 1.5).

An instance in the realistic space, starting from the encircled point
where ¥ = 12, is plotted in Figure 3.4.6. Note how P must go twice
leftward before veering back to get at E; note how E at first follows in an

%
3
X
effort to intensify P’s need for this maneuver.

Figure 3.4.4 3 This is not the only outcome, for in this game the optimal strategies are

\VAVAVAVAVAV

E:
3

/N /NN /NN

VAVAVAV/
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often not unique. The cause is merely the quantization and is easy
apprehend. Suppose, say, E wished to travel a long stretch horizontay]
(in terms of the orientation of the figures) as rapidly as possible. He wouy}
have to zig-zag and at alternate points would have two equally good m0v
(he could go slantwise up, then down, or down-up).

For reasons such as the above many of ,,
/ x

niceties of the homicidal chauffeur game by
come blurred in its discrete version. In latg :
chapters we shall study a curve called g
barrier which delineates the starting poin
leading to a swerve. On the barrier V is dig
continuous. The counterpart can be crudef
seen in Figure 3.4.5 by looking for pairs g

adjacent points at which V differs by mof}
\ than 1. :

X 3.5. QUASI-DISCRETE GAMES

An occasional use of discrete models is thgj
~ sometimes, when we are perplexed about
E  differential game or some phenomenon thers
in, we can gain a foretaste of the truth by
step-by-step solution of a discrete analog
Sometimes better for this purpose are model
10 that are partially discrete, partially conti
uous. We will sketch lightly one such poss'

bility.
Let us retain the continuous vectograms of
11 a differential game but decompose time intg
a series of fixed (and usually equal) intervals}
The players move alternately. A move lastg

yrd are kept fixed.
Figure 3.4.6

choice over a continuum of directions.

The stepwise construction of V" begins as shown at (b) of the ﬁgurei

4 We are not following exactly the dictates of the previous paragraph in that we 2

not basing our work on the ¢- vectograms of the continuous version in the reduc '§

space. Such vectograms will be described in Section 10.2.

an interval and during it the control var1ab1 ]

We will again use the homicidal chauffe 5
game. Following the pattern of the lasig
example, we take vectograms! as in (a) of Figure 3.5.1. On a move a§
player makes a displacement of a prescribed magnitude, but he has af
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(a)

(b)
Figure 3.5.1

_Using the same reduced space as before, the capture region will be, say,

the circle €. The first step to find the subset S; of & of points x such that
one move by P will bring x to or within €. The set .S; will be bounded
underneath by part of % and above by curve such as 4, in the figure; it is
just the set where ¥ = 1. Next we find the subset of §; which inhibits
escape by E, that is, the points x of S; such that no move by E can cause x
to leave S;. In the sketch it lies below the curve B. The next cycle starts
by finding Sj, the set of points not in € or S; such that some move by P
will bring them to the above set between B and %. Then S, is the set
where V' = 2. We continue so.

An actual execution of this procedure would seem to be extremely un-
wieldy if # exceeded 2. For a planar case as described, a practical method
is to use two sheets of tracing paper, one for the A curves, one for the B,
and alternately trace from one to the other.

-



CHAPTER

The Basic Mathematics and th;
Solution Technique in the Sma

The fundamental mathematical concepts that will permeate the rest gf
this book appear here.! The main equation, a first-order partial differentjy
equation for the Value, ¥(x), is derived by two methods. Its appropria 1
integrals can be shown actually to be the Value of the game in eacf
particular case by what is termed the verification theorem. The theorem f§
proved and its use illustrated by a varied sequence of examples. :

The final sections construct our standard method for obtaining solution}

in the small, that is, in all cases where there is no interference from singulgf :

manifolds.

4.1. THE NATURE OF A SOLUTION

When a particular differential game has been solved, the results wilf
generally embody such entities as 3

1. The Value: the function V(x) defined over &. .

2. The optimal strategies: (vector) functions $(x) and $(x) defined oved

€. They may or may not be unique. In the latter event we might be§

interested in obtaining the complete set of all optimal strategies or wigk

might be satisfied with just one. 2
3. The optimal paths: when either the optimal strategies are unique o

for some reason, we have decided to devote our attention to a uniqud

choice, there will be a set of optimal paths which are traversed by x whetigs
these strategies are played. These paths should fill & and each shoulv

terminate on %.
1 A re-edited version of RAND Report RM-1411 (21 December 1955).
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rhere will be cases where these entities do not all exist, at least not in
,.Of &. The later Example 7.8.1 is an elementary instance. There are
e subtle types; some counterexamples in works on the calculus of
jations would be such instances of one-player games. In such cases we
ard a solution as the supplying of as much enlightening information as
circumstances warrant.

‘We prefer not to hedge in the concept of a solution by too rigorous a
finition. In the event of the nonexistence, in all or part of &, of the
ptities 1, 2, 3 or some other pathological aspect, we will regard the game
s solved when these phenomena are elucidated and understood. Non-
stence is not a calamity; usually there is a simple and enlightening
,gplanation.

.Even in completely nonpathological case, when 1, 2, 3 all exist without
implications, it is not always necessary to specify explicitly all three.
ot example, if V(x) is known, the optimal strategies, as we shall shortly
e, can be computed as known functions of the state variables and the
rtial derivatives of V. If the optimal strategies are known, the optimal

paths follow by integration of the kinematic equations; if ¥ is integral, it

pecomes known through a functional elimination.

- There will be cases where processes of the latter types are perfectly
routine in principle but oppressively tedious to compute explicitly. Whether
it is worth the trouble of doing so depends on what motivated the problem.

" If it was to illustrate ideas, as are many in this book, then often the fruits

of the labor bring no further lucidity. Even with a practical problem it may
be only certain aspects of the solution that will find application.

Thus, in the ensuing examples, in this regard there will be considerable
variety, guided by judging the value in interest against the cost in labor, as
to how detailed are the solutions presented.

To be purely logical, the solution should be expressed in terms of

K-strategies. However, we will reserve this concept as an ancillary tool
with which to give solutions a rigorous meaning when this is deemed
necessary and to prove their validity. We shall demonstrate how such is
done later in this chapter. In the future we will take the possibility for
granted; we shall speak of strategies rather than tactics and generally
think in terms of integrations of the kinematic equations.
) We recall that the data of a game include a particular starting point
in € and that we have used the term “game” rather freely for what
should be a family of games. When we speak of the solution of a game
for. a certain subset & of &, we will refer to all games with starting
points in &,

The process of solving a game splits into two phases. It generally turns
out that the region & is to be divided into a number of parts separated by
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the surfaces which we shall later call singular surfaces.? In eac.:h part the
solution will be smooth, that is, " will be of the class C;. By this we mean
that surfaces of constant ¥ have continuously varying tangent planes;

analytically, for all small vectors u = (g, ... 5 uy,)
Z oV
Vot w) = V) = 3 20y 4 ju) ofu, @11
i=1 2

Similarly, except possibly on,singular surfaces, the optimal strategies
will be continuous functions denoted by &(x) and P(x) when they are
unique; when they are not, we shall often assume such continuous func-
tions can be selected.

On the singular surfaces a variety of special kinds of behavior can occur.
This diversity has thus far defied a systematic theory which can be special-
ized to treat each type. A classification and notational scheme will be
attempted in Section 6.1, but it does little more than catalogue the
possibilities. Much of the space devoted to theory in this book concerns
singular surfaces, and the theory of each type is distinct.

We shall at times use the term in the small to refer to the smooth parts of
the solution found between the singular surfaces. The problem of identify-
ing the singular surfaces and assemblying the smooth parts into the total
solution will be described by the phrase in the large.

We shall see that the technique in the small is one of differential equa-
tions. This phase of the problem plays a part in full solution somewhat
analogous to that played by the Euler equations in the calculus of varia-
tions. But we have been impelled to innovations of technique. Although
our methods can handle the classical problems by viewing them as one-
player games? (the second player is inactive in that his vectograms are null),
we cannot do so through “extremals” but must distinguish minimum and
maximum at the outset; how else could we handle games?

Not all types of singular surfaces are foreign to the classical calculus of
variations. But until we adopted the present game theoretical point of
view, there was no compelling motive for identifying them, and their
presence has been tacit. In our work, not only is the variety richer but the
type of problem that game theory makes prominent emphasizes their
importance.

It is hard to make a categorical statement as to the relative importance
of the in the small or in the large phases. In some problems the integral

? There may also be singular manifolds of dimension <'n — 1; such of course cannot
separate the components of &, In the theory as thus far developed, they have been
rather neglected. The term surface means an (7 — 1)-manifold in n-space.

3 See, for example, the dolichobrachistochrone problem (Section 5.2).

4 See, for instance, Example 7.2.1.
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solutions between the singular surfaces are simple, but Fhe latter Fhem-
selves are numerous, varied, and difficult. In othetrs the 1ntegra'ls yield a
rich family of paths which fill & with little or no smgullar behavior. The
homicidal chauffeur game is an instance of the former; in the next chapter
(Section 5.5) the game of the isotropic rocket, a variant of the same

roblem, falls in the latter category. The nearest we can come to a general
criterion is to say that linear vectograms (the control vaflables appear
lineally in the KE and G) imply many singular surfaces; indeed certain
types can occur only in such linear cases.

42. THE MAIN EQUATION

We suppose that the Value of a differential game exists. It will depend
on the starting point x and we denote it by ¥(x). We shall show that ¥(x)
satisfies a first-order partial differential equation, to be called the mqin
equation (abbreviated ME), whenever ¥(x) is of class C;. We shall write
here and in the future

V,-for-a—V, j=1,...,n
ox;
The ME is

minmax 3 [V b + 6 g 9| =0 @2
4 [ ]

Summations without limits, as written here, will be understood to run
from 1 to n, where » is the dimension number of &.

From the minimax assumption, it makes no difference if the min and
max in (4.2.1) are reversed. It is understood that they range over all
(vectorial) ¢ and y which satisfy the constraints.

We shall give two proofs. The first will follow immediately. Our
treatment ‘will be heuristic, inasmuch as we shall erect our serious founda-
tions on the second proof, but the mathematician will easily see how to
render it rigorous. The advantage of this first derivation is its straight-
forward, instructive character. It is the continuous counterpart of the
process used for solving the discrete games of the preceding chapter.

We utilize what might be called the tenet of transition. The germ of the
idea is that we are dealing with a family of games based on diﬁ'erept
starting points. Let us consider an interlude of time in midplay. At its
commencement the path has reached some definite point of &. We
consider all possible x which may be reached at the end of the interlude
for all possible choices of the control variables by both players. We sup-
pose that, for each endpoint, the game beginning there has already been
solved; in other words, ¥ is known there. Then the payoff resulting from
each choice, ¢, ¢ during the interlude will be known, and the control

® .
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variables are to be so chosen as to render it minimax. When we let the
duration of the interlude approach zero, the result yields a differential

equation.
We put the above reasoning formally. Let ¥ be known at x in & which

has been reached in a partie at time t. A short time later—¢ + A—the
play has progressed to the (variable) point x°. Then

t+h
P(x) = payoff at x =f G(x, ¢, p) dt + V(x°)
¢

for during the interlude (¢, ¢ + k), the payoff acquires an increment equal
to the above integral which, to get Z(x), must be added to the payoff at x°
(which, of course, is the sum of such an integral extended over the remain-
ing time of play and H at the terminal point). We assume that play from x°
is optimal, so that the payoff here is V(x%). The idea of our reasoning is to
regard x as fixed but to admit various x% which arise from all possible
choices of ¢ and v during (2, ¢ + h).
We shall replace the integral by a Taylor expansion of the type

f @) dw = B Q) + WP+ OB, 0 <0< 1.

In the final term we shall write
xXX=x+4+u

where, very closely for small enough A (because f; is 2; for the ¢ and y
chosen),

u; = fi(x, ¢, h
and we shall use (4.1.1) to make a further replacement. When all these
have been done, we find that

P00 = V() + b G, o 1) + S Vifx ) + o]

where the ¢ and v stand for their values at x% and « goes to zero with 4.

We are to take the minimax of & with respect to ¢ and ¢. Such means
applying this operation to the bracket. But, as by definition the minimax
of & is V(x), the minimax of the bracket equals zero. Letting #—0,
we have (4.2.1), the ME.

We shall refer hereafter to (4.2.1) as the first form of the main equation
and designate it by ME,. If we actually ascertain the minimax, the ¢
and y (or a judicious choice if there is more than one possibility) that
supply it will in general depend onx (= 2y, ...,2,)and the V,(i=1,...,n).

5 Or better, some mean value during the interlude (1, t + ).
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It will be convenient to write the latter vector V... V,}as v, 6 The
b a n

the minimax in the ME, will be furnished by

$x, ¥,) and ¢(x, V). (4.2.2)

When these functions are substituted into the ME,, the bracket will be
zero; we will have

2 Vil $05 Vo), 906 Vol + GIx, $(x, V,), 9x, V)l = 0 (4.2.3)

a first-order partial differential equation in ¥ which the Value must satisf
We will refer to (4.2.3) as the second form of the main equation and deno{é
it by ME,.

We have already used ¢(x) and (x) to denote optimal strategies. Note
that (4.2.2?, as they stand, are not strategies at all, for we are presuming
that at this stage we do not know the V. However, in practice, this
conflict of notation does not appear to create any confusion and s’eems
preferable to some novel symbol, such as ; » for (4.2.2). Note that once ¥
is kn'own and its partial derivatives inserted for the V; in (4.2.2) these
functions become the optimal strategies $(x) and @(x), a fact which
ameliorates the above possible confusion. ’

In the future, when an ME, is written, to save space the arguments x, V,
of ¢ and % will often be omitted. We shall take pains to label the equat’ior:;c
ME;, so that the reader may be aware of these unwritten symbols.

Exercise 4.2.1. The fo}lowing KE will be those of Examples 4.4.1 to 4.4.5

to come (hqwever, their comprehension is not necessary for this exercise)

The payoff is terminal and the KE are '
%= uyp + wsin ¢

g=—1+wcosd, —-1<p<1

where u and w are smooth, positive function i
sof z and y. Write t
and show that the ME, is e ME,

uVep —wp — ¥, =0
where, if p = / V.24 V2
p=sgnV,
sing = —V,/p, cosd = —V,/p.
(Use Lemma 2.8.1.)
¢ The customary notation being grad V. This notation is generally not required in

articular i : .
I;V/az_ problems. In such, if 2 denotes a state variable, ¥, will of course mean

n
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Exercise 4.2.2. The homicidal chauffeur game. Write the ME, and ME,
for both the KE (Example 2.1.2) in the realistic space and the KE (Example
2.2.2) in the reduced space. One notation for the former willbe V4,..., V,
the subscripts pertaining to the state variables in the order in which they
appear in the KE. (The reader will find the required ME in subsequent
pages.)

Observe that along an optimal path

V= Z V:if:i(x’ ‘55 ‘?) = —G(x, J’a 1/-))

and so V is constant on all such paths if and only if the payoff is terminal.
The second proof of the main equation depends on a new concept:

4.3. SEMIPERMEABLE SURFACES AND A SECOND
DERIVATION OF THE MAIN EQUATION

We take it that each small portion of the surfaces under discussion
separates the neighboring space. As orientation is germane to our purpose,
we distinguish the two directions in which the surface may be penetrated,
calling them the P- and E-directions. The “side” of the surface reached
after penetration in the P-[E-] direction will be called the P-[E-] side. We
take a point x on a so oriented surface and visualize the full vectogram at
x. We will say the surface is semipermeable at x when the following is true:

There is at least one value ¢ of ¢ such that if ¢ = §,7 no vector in
y-vectogram penetrates the surface in the E-direction. Similarly, there is
a 9 which prevents penetration in the P-direction.

A surface having this property at each point will be called a semi-
permeable surface, abbreviated SPS.

We have already seen (Theorem 2.4.1) that we can transform any game
into one with terminal payoff. Consider an instance of the latter which we
suppose solved and for which ¥(x) has at least two values.

Any surface which separates the parts of & where V' > c and V' <c¢
(c, any constant) must be semipermeable with V" decreasing as the surface
is crossed in the P-direction. For if, at some point x of the surface, there
were no ¢, P could not prevent E from pulling x into the side with the
larger V. Similarly, there is a . Thus, for x on the surface, the players
must employ ¢ and , and these are the optimal strategies there.

7 #[9] will be used interchangeably to denote a value of $[y] with the described
property or the set of all such values. Even though we seem to have burdened the
barred control variable with still a third meaning, it will soon coalesce with our former
usages.
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Now suppose in a certain subregion of &, V is of class C; and constant
in no neighborhood. Then the surfaces on which ¥ is constant will be
semipermeable. The vector ¥V, = {¥,} is normal to such surfaces. Whether
a moving point penetrates the surface in one direction or the other or not
at all depends on the sign of its velocity component along this vector.
That is, the semipermeability condition for the surfaces of constant V is

m¢in max 3 V.f(X, ¢, v) = 0.° 4.3.1)
v £

But this is the main equation in the terminal payoff case.

If we regard ¥, as the flow velocity of some substance in &, (4.3.1) can
be interpreted as implying no flow across a SPS when ¢ and ¢ (yielding the
min and max) are employed. Using but one of % and ¢ and leaving the
other free, we see that each player can prevent a transverse flow across
the surface in his direction. Hence the name, semipermeable surface.

Suppose we had begun with a general game and used the transfor-
mation of Theorem 2.4.1 to obtain one with a terminal payoff. If there
were 7 state variables originally, the sum in (4.3.1) will have # + 1 terms,
and f,,,, will be G. We know that in the transformed game, H is (the old
H) + s5,, and the new optimal paths are translations of the old in the
,4 direction. Thus if, at any starting point, #,,, is increased, ¥ will be
increased by the same amount. Therefore V,,, = 1.

The preceding two replacements show that the final term in the sum of
(4.3.1) is G and so this equation is identical with the ME,, (4.2.1).

The preceding conception furnishes an outlook on differential games
with rather forceful intuitive appeal. For simplicity, let us envisage a case
where everything turns out to be smooth; there are no singular surfaces.®
The payoff is terminal; we know this can be made true of any game.

On %, the function His given. We assume the curves [(# — 2)-manifolds]
on & of constant H cover this surface in a regular way. Now, suppose we
succeed in filling & by a family of surfaces with just one passing through
point of &, such that

1. They are SPS, suitably oriented.
2. Each meets ¥ in a curve of constant H.

(Our technique of solution, a basic constituent of this book, is logically
equivalent to the construction of such a family.)

® A more detailed interpretation of this equation’s being characteristic of smooth
SPS will be found in Section 8.3.

® Such is generally true of the in the small constituents of more general cases.
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Then it certainly seems reasonable to assert that these surfaces are of

constant ¥ (the constant being the value of Hat €). For at any point of &,

the minimizing player P, when suitably opposed, cannot cause x to
penetrate the local surface to one of lower V. Nor can E, similarly,
attain a higher V. In fact, to prevent his opponent from doing better than
V' (which labels the local surface) each is compelled to use the non-
penetrating ¢ and $ which appeared in the definition of a SPS. Aslongas
they continue to do so, x remains on the same surface; a defection by
either player makes it possible for his opponent to penetrate to a more
advantageous one.

Now, if continued play with ¢ and  will bring x to €, we feel a strong
assurance that the labels on the surfaces are values of the Value. The
italicized assumption above is typical of the domain of games of kind.
We will broach the subject in this chapter with two typical illustrations
(Examples 4.4.4 and 4.4.5).

The theorem of the following section is an adaptation of the foregoing
ideas to K-strategies.

44. THE VERIFICATION THEOREM

Inasmuch as the diversity of phenomena that will soon be seen to arise
in even the most typical problems is great enough to preclude an adequate
existence theorem, we shall adopt another approach. We shall develop a
technique for solving problems. The question will then be whether the
formal solution so obtained—the Value ¥(x) and the accompanying
optimal strategies ¢(x) and @(x)—really solves the problem, and if so, in
what sense.

The sense will be that of K-strategies. The means is Theorem 4.4.1. It
may be applied separately to the stages of the solution process, each of
which is essentially the finding of an integral of the main equation which
satisfies the proper boundary conditions, such as agreeing with H on €.

We shall state and prove Theorem 4.4.1 and demonstrate its use with
some examples. Let us recall our general assumptions that each fi(x, ¢, ¥)
is a continuous function of its three arguments and the constraints limit ¢
and y to sets; we shall call these sets E, and E,, and they are compact and
independent of x. First the

LEMMA 4.4.1. If ¢ and y are held constant and x is confined to a compact
set E,, then f(x, ¢, ¥) is uniformly continuous with respect to x and all
possible constant values of ¢ and .

Proof. We have to show that for each ¢ > 0, there is a § = () such

that
|f(xla ‘l’, 1/)) _f(XZ, ¢: 'P)l <e
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for all X!, x? € E, with
' —x* <6

and all c E; and y € E,. But fis a continuous function of all three
(vector) arguments in the compact product set E, x E, X E, and hence
uniformly continuous therein. The lemma is a special case of this uniform
continuity.

THEOREM 4.4.1. Let &” be a subregion of & neighboring a subregion %"
of % in a game of degree with terminal payoff. If a function ¥(x), defined
in &', enjoys the properties:

1. It satisfies the ME, (4.3.1) in &’

2. It is of class €, in &

3. It equals H on &’

4, It is the only function satisfying 1, 2, and 3.

If $(x) and $(x) are any functions which furnish the minimax in (4.3.1),
then ¥(x) is the Value in &” in the sense of K-strategies and ¢ and ¥ are
optimal tactics, provided that x reaches €” from any starting point in &”.

Proof. In Section 2.7 (end), we learned that, by a change in the time
scale, we can bound all speeds in each full vectogram in &’ without
changing the game in any essential way. Let us do so with the bound < 1.

Let us select a tactic $(x) for P such that for each x, & is minimizing in
(4.3.1). Let E play any K-strategy; let ¢(x) be its tactic. Play starts from
x’. Givenane > 0, we are going to complete P’s K-strategy by constructing
a 0,. We shall speak as if P were to play indefinitely; of course, we need
but curtail our scheme when ¥ is reached.

First we divide time into unit intervals I,: n <t<n+1(m=0,1,2,
.++). During I,, x cannot have traveled more than n + 1 from the starting
position x® and so is constrained to a compact set. Aseach V¥, is continuous
by 2 and from the lemma, the function X,V (x)f|(x, $, ) is uniformly
continuous in this compact set when ¢ and y are constants and uniformly
with regard to these constants too.

Pick m,, so that if x changes in distance by less than 1/m,, the quantity
Z,Vf; will change by less than ¢/2"+1. Next subdivide I, into m, equal
parts, completing o,. Then, during the passage of any of these subinter-
ludes, the change in X,Vf; suffers the same bound as above. A sub-
interlude may again be subdivided by one or more ¢’ from E’s K-strategy.
But at the beginning of each of length 1/m,, because P then used a
minimizing ¢ in (4.3.1), we have

; Vif(x, SZ’ ) < 0.

The arguments ¢,  being the piecewise constant tactical values from the
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K-strategies played, the left side cannot rise to £/2"*! during any such
interval and therefore cannot throughout 7.

Now let us consider the path of x under the preceding K-strategies.
In each of the ultimate subinterludes, when both ¢ and y are constant, it is
an integral of the KE with these constant arguments; thus the path is a
*“polygonal” sequence of smooth segments. On the path as a whole V' is
continuous, and on each segment dV/dt exists and is given by Z,V,f(x, ¢, )
with appropriately constant ¢ and . From the preceding paragraphs it
follows that the growth of Vis less than £/27+! during I,, and hence always
lessthane(3} + + +...)==¢.

By definition and from 3, the payoff will be the ¥(x) when x reaches

%'. Therefore payoff < V(x) + .

Similarly, we can construct a ¢,” for E ensuring a payoff >V(x%) — e.
Thus V is the value.

The application of the verification theorem may be multiple; such is
accomplished according to the following general idea: Let " and ¢’ be asin
the hypothesis of the theorem. Pass a second surface €” through &”. If
we use this surface as we did €”, taking for H on %" the values of V(x)
obtained from the first solution, the new solution on the side of " away
from ¥”, will agree with the old. This principle permits the validation of a
complex solution in consecutive stages. Singular surfaces of various
types can be handled as ¥” above, referring now to a new phase of the
solution rather than confirming an old one.

What of the very embracing final clause of the theorem? Whether or
not termination will occur is a matter of games of kind and their treatment
too falls under the aegis of K-strategies. The subject is treated in detail in
Chapter 8, but we must make some anticipations here.

Since we are dealing with games, we shall suppose one player, say P,
desires termination while his opponent does not. In the most interesting
cases (and the only ones discussed in this book) both termination and
nontermination starting points exist. The former are such that P has a
strategy ensuring termination against any opposition; the latter are such
that E can similarly prevent it. The two sets of points are separated by
a surface, which must be semipermeable, called the barrier.!® Let us
imagine the barrier imbedded in a lamina consisting of neighboring
“parallel” SPS and define (temporarily) a smooth function U(x) on the
lamina which equals zero on the barrier, is strictly decreasing in the
termination or P-direction, and constant on each SPS. Then U satisfies
the same equation (4.3.1) as ¥ and so we can construct a K-strategy for P

10 These ideas are amplified in Chapter 8.
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as in the preceding proof. For any starting point x° on the termination
side, so that U(x%) < 0, if we use an ¢ < —3U(x), then for all x of the
ensuing path, U(x) < 0. Then, no matter what K-strategy E plays, he
cannot make X cross the barrier into the nontermination points. Similarl
for starting points on the other side, £ will have a K-strategy deterriné
entry into the termination region.

Once the question of termination or not is settled in this or a similar
way, we can apply Theorem 4.4.1 with &” consisting only of the termination
points. We now have the requisite assurance that termination will occur.

Throughout this book we shall solve many examples in the sense of
ascertaining entities ¥(x), §(x), #(x) as discussed in Section 4.1. In principle
we should apply the verification theorem to each to prove that the formal
solutions are actually such. But as this would lead to a pattern of monoto-
nous replication, we shall give here a series of simple yet typical illus-
trations—all variations of the same example—which will clarify many
aspects of the general procedure.

This chain of examples will unavoidably necessitate our anticipation of
certain later ideas. The reader can either read these cases lightly now and
return to them after subsequent ingestion, or he can do some (light)
reading in the requisite advanced pages.

We pause first to recall the germ of the K-strategy idea. When we have
found, say, $(x) and employ it as an optimal tactic, it can be pitted
against any y(x) which fulfills the constraints. We are freed from putting
any constrictions of function type, such as piecewise continuity, differentia-
bility, etc., on the opponent’s strategy.

Example 4.4.1. & is the upper half-plane and % is the z-axis. The vecto-
gram for E is shown at Figure 4.4.1a; it has a downward unit vertical
component and a horizontal headline!? of half-length u(z, %), a positive and
smooth function. That of P is circular of radius w(z, ¥), again a smooth,
positive function with always w < u and, for some constant ¢, w ec< L.
The total velocity for x is to be the vector sum of a choice from each
vectogram. Analytically all this means that the kinematic equations are

Z = u(z, y)y + wlx, y) sin ¢

y=—-1+wxycosd —I1<pgIL

The payoff will be terminal with H = x on € (where y = 0). Thus E
will strive to have x reach % at a point as far right as possible, and P
similarly struggles for the left.

Always E will play his rightmost vector (v = 1 in the KE). At (b) of the

11 That is, the line of “arrowheads” of the vectors.
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Figure 4.4.1

figure let XA be this vector. The dashed line XB is tangent from X to a
circle of radius w (w is reckoned at X) and center 4. Then XB is a properly
oriented semipermeable direction. If a family of curves is drawn (an
ordinary differential equation solved) having these directions as that of
their tangents at each point, these curves will be SPS. If each is labeled
with the value of H at its meeting with %, the labelings will constitute V(x).

These assertions either follow from our analytic methods still to come or
they can be attained geometrically. To see that XB is semipermeable,
consult Lemma 10.2.2, which deals with a very similar situation.

The curves of constant V, which are also the optimal paths, perhaps
appear as in (c) of the figure. The four hypotheses of Theorem 4‘.4.1 are a}l
satisfied by the above V(x). Further, as the downward veloc.:lty of x is
always at least 1-c, we are assured that every partie will terminate. Thus
there is no difficulty in asserting the theorem’s conclusion.
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< &

Figure 4.4.2

Example 4.4.2. The same, except we change H. It is increasing except on
a certain interval where it is constant, say d; its graph is as in Figure
4.4.2a. Such causes a region (shaded in (b) of the figure) in & where V is
constant; in fact V = d.

Because here all V; = 0, the main equation is certainly satisfied. As any
$ and w give (trivially) the minimax, all are optimal. Considering the
nature of the game, this is certainly true in the shaded region. The
theorem holds.

The point here is simply that, whereas ¥ is unique, § and ¥ do not have
to be so.

Example 4.4.3. Again the same, except that now H = 22. Thus E will
strive to have x cross € far from, and P near to, the point where 2 = 0.

It is evident that at points far to the right in &, our previous construction
holds. For points far to the left, a symmetric one holds with E playing his
leftmost vector, etc.

Thus we construct two families of paths as shown in Figure 4.4.3,
Chapter 6 deals with such cases; there we learn that we should delete the
paths after they cross (in the sense of traversing them Jrom €) a curve @
which is the point set where the two functions ¥(x) are equal (£ will later
be termed a dispersal surface).

For x on either side of & we apply the theorem, but we must take & as
that part of & lying on one side of 2 and % the part of @ lying on the same
side of O and 2 itself. For either part H is taken as given on the retained
part of € and as the mutual value of ¥ on 2. In this way all hypotheses of
the theorem are fulfilled and we can appropriate its conclusion. Observe
that no other dividing curve but 2 can accomplish this result.
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Figure 4.4.3

For starting points on & each player is faced with two choices of values
of his control variables. Each should play a mixed strategy making his
choice with probabilities (3, 4). This matter is discussed at length in
Chapter 6.

There are two points to note here. We curtailed part of the solution of
the main equation: therefore, not all of every formal solution ¥(x) need
be the Value of the game. A more subtle instance occurs in connection
with equivocal surfaces and will be expounded in detail in Chapter 10.

The second point is that & is a singular surface; although V(x) is
continuous, certainly all its first partials do not exist there. The theorem
is quite capable of dealing with problems that have singular surfaces when
judiciously applied.

Example 4.4.4 We now let & be the entire plane and % the positive
x-axis. H can be taken as z as in Example 4.4.1.

What is new is that from starting points far to the left x may miss ¢ and
there will be no termination. It is more interesting to have P desire
termination and E, its avoidance. That is, E wishes to escape (nonter-
mination) if possible; if not, he wishes X to meet % as far to the right as he
can occasion.

We could realize the foregoing situation numerically by assigning the
payoff + oo in the event of escape, but such seems a rather empty formalism.

We have explained very briefly, on page 74 the nature of a barrier and
referred the reader to Chapter 8 for fuller details. In our case the barrier
will be the “left-hand” semipermeable surface, in the sense of Example
4.4.3, which passes through O. It is marked & in Figure 4.4.4.

As was explained earlier, if x lies to the left of #, E has a K-strategy
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which guarantees X’s not crossing % and hence ensures escape. Similarly,
if x lies to the right of %, P has a K-strategy which deters crossing (in the
opposite sense) and so ensures termination. (We make no statement now
concerning the case of X’s starting from 4.)

For starting points to the right of # and above €, both players, knowing
that capture is inevitable, play the game of degree. The reasoning is just
that of Example 4.4.1 except that & is taken as the above subset of &
bounded by # and €.

The fact that the optimal strategies of P—that of assuring termination
and that of minimizing the numerical payoff—are distinct has little effect.
He never need be concerned with the former unless x gets very close to %.
(As there is no lower limit to this closeness, we might say the latter
strategy is optimal throughout the interior of §”.) But should E be foolish
enough to make some attempt at escaping, P can wait to frustrate him until
x gets very close (if it does) to %, meanwhile playing the game of degree
optimal strategy; E will not escape but will be penalized in payoff also.

Again we have part of the formal solution ¥(x) (to the right of %) not

being the Value. But the main point here relates to the final clause of the
theorem. We sketch another such instance.
Example 4.4.5. The same as Example 4.4.1 except for the inequalities on w.
Far to the right in &, w(z, v) is subject to the earlier strictures, but as =
decreases, w grows until at the far left w > 1 and w > u. From such
starting positions P has command of the motion of x; he can avoid
termination if he wishes.

Let it be that he does so wish and E secks it when possible. Such is
the case sufficiently rightward in &.

Again it is possible to segregate the termination and escape points by an
SPS of the type which in Chapter 8 will be called a natural barrier. Any
premature details here would fill an undue amount of space.

Once this barrier is known, the discussion becomes very much like that
of the last example and will not be repeated.

B

o qg/

Figure 4.4.4
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The only point we wished to make here is possibly superfluous. In all
the previous examples the question ranked strong of the inevitability of
termination. Only in 4.4.4 did we admit the alternative possibility. Did
our means seem artificial there? First, assurance by bounding the down-
ward velocity of x from below; then negation, by cutting off €. We
wished to show here that our ideas stand up under “natural” circumstances
too.

45. THE PATH EQUATIONS

We now revert to the technique for obtaining solutions. The contents of
this and succeeding sections will be used extensively throughout the rest

of this book.
Our starting point will be the ME,, which we rewrite for reference:

S Vifix 6.9 + 6(x, $,9) =0 (4.2.3)

where ¢ and  are functions (4.2.2) of the vectors in x and V.

We differentiate (4.2.3) with respect to each z,. Doing so according to
the rules of elementary calculus, we examine the components as they
arise. First we have

ov;
—f 4.5.1
25 @5.1)
. v o'V A .
9 9 _Tkand f, = &,
But since 2m, " Bw 0%, 9%, and f; = 4,
4.51) = A2 %=V
T Ox,

The latter term would be the time derivative of ¥ along the resulting path
were ¢ and ¢ played. Next we have

S Vifu+ G

oz,

i oG
where f;.(X, u, v) = % (x, u, v) and G, = =— . Then we encounter
k

$ 2 (sus+o)id 452)
=10, \% oz,

Each ¢, is supposed subject to constant bounds as discussed in Section
2.7. The minimizing §; occurs either interior to the constraining interval
or at an endpoint. If the former, the /94, () term of (4.5.2) is 0 because of
the minimizing property of ¢; if the latter, the 8¢,/ is 0 as ¢, is constant.
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In either case then (4.5.2) vanishes. The same is true of the remaining
terms devolving on the ;. We conclude

= — {3 Wlali, B, V. 905, V1 + G, $x, V), s V- @459
Using the barred control variables in the KE themselves gives further

d:k =f;c[xa $(X, Va;)a 1/')(x, Vm)]’ (45'4)

This set (4.5.3), (4.5.4) of 2n ordinary differential equations in the 2n
unknowns z,, ¥, shall be called the path equations. Actually they are the
characteristic equations!? of (4.2.3) (slightly special in that the terms (4.5.2)
are nullified). Solutions of the ME, can be built from integrals of the path
equations in the standard manner,'? a procedure we shall shortly adapt to
our purposes.

Note that the brace in (4.5.3) is nothing more than the formal derivative
of (4.2.3) with respect to , that is, we ignore all but the explicit appearances
of z;, in (4.2.3).

4.6. THE RETROGRESSION PRINCIPLE

When solving a game we reverse time; we start at ¢ and work back-
ward into &. From the point of view of differential equations the motive
is clear. In the previous section we effectively reduced the construction
problem to the integration of the path equations. We cannot obtain the
appropriate particular integrals without initial conditions. And at the
outset of a problem we will have the needed data only on € where we know
V=H.

But perhaps a stronger, if more heuristic, insight can be gleaned from the
discrete examples of Chapter 3, where building backward from the terminal
states was plainly the only means at our disposal. And it would appear that
any differential game can be quantized into a discrete one.

We shall henceforth use the symbol 7 for the time needed for x to reach
% (or some other surface playing a like role) so that on any optimal path

T = constant — .
The symbol Z will mean 0z/dr so that
=) .
z= —2
The path equations, when rewritten in this retrogressive notation (the

12 See, for example, Reference [6).
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signs of the right sides are changed), will be referred to as the RPE (Retrg}

gressive Path Equations) and will be an essential constituent of ¢
standard procedure: ‘

Be= 4D 6.1
IS;C = Z Vifadx, ‘5’ P) + G(x, $, ). (462

Again we note that the right side of (4.6.2) is the derivative of (4.2.3)
with respect to explicitly appearing ;. 1
Let us recall that (4.6.2) was derived on the assumption of constang
constraints for the control variables. Although such can always bg
brought about, occasionally problems arise where it is inconvenient tg
do s0.”® In these cases we must adjoin terms to (4.6.2) corresponding
suitable derivatives of the proper control variables. 4
It is interesting to note that the RPE are Hamilton-Jacobi equations
although we have found no means as yet of capitalizing on this factd

Exercise 4.6.1. Find the RPE for the ME, given in Exercise 4.2.1. Takel
u=1+a% w=4e?. Verify that the left side of the ME, has zero|
derivative with respect to 7. ;
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Exercise 4.6.2. Find the RPE for the homicidal chauffeur game in the
realistic space. The ME, is here '

wy(V, sin 6 + Vzcoso)+w2p+%l{r,$+l=0

where p=vVV2+ V2 ¢=—sgnV;
and siny‘;:ﬁ‘, cos P =2,
P

The KE are on page 28. |
(The answers to these two exercises appear at the end of this chapter.) B

Problem 4.6.1. From the solution to the last exercise, show that for the ¥
solution in the small of the homicidal chauffeur game, P always turn
sharpest possible right or left and E travels in a straight line. Thus we ca ;
expect the solution to have many singular surfaces. '

47. THE INITIAL CONDITIONS

We use this term in the retrogressive sense. We are concerned wit I
known values of x and ¥, on & (or some other surface playing a like role)

which can serve as initial conditions with respect to = when we integrate

13 For example, Example 5.6,
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RPE. But in the progressive sense, that of ¢, the Wway a partie actually
svelops, they are final conditions.
Jn many games not all of ¥ is capable of serving as a receptor for
rmination. In the homicidal chauffeur game, for example, if we regard
as the planform of the car driven by P, it is clear that only the front
umper will be effective; it is rather difficult, when driving forward, to run
ver a fleeing pedestrian with the rear of one’s car.
To study this phenomenon in general consider a position very near %.
One or the other player may be able to force or deter an imminent termi-
pation despite any opposition from his opponent. Letv = (v,,. .., »,) be
the vector normal to % from point x on ¥ and extending into &. If

m‘gn max Y »,f(x, é, ) > 0 4.7.1)
14 <

then E can prevent immediate termination from a position sufficiently

. near x. If (4.7.1) holds with the inequality reversed, P can compel im-

mediate termination.

. There is the question of whether a player will benefit from the exercise of
such power. Sometimes the answer is obvious. We cite the case of
termination time payoff; clearly E will defer termination whenever he can.
But in other instances E may see that avoidance of the frying pan now will
only lead to the fire later. We leave the intricacies of such questions to
individual cases. However, in all yet encountered there have been no such
difficulties. For definiteness, let P desire termination and let it be to E’
advantage to avoid it if he can. Then we have found that whenever ( 4.7.1)
obtains, E will defer an imminent ending.

Similarly, at those points of ¥ where (4.7.1) holds with the inequality
reversed, P will occasion termination immediately. These points will be
called the useable part of €. Termination will occur only at the useable
part under optimal play.

The subset of &, where (4.7.1) holds as it stands is the nonuseable part.

The curve [(n — 2)-manifold] on % which separates these parts, that is,
for which

mjn m;ix ; i fi(X, ) =0 4.7.2)
is called the boundary of the useable part, abbreviated BUP,

Of course, in many problems all of % is the useable part, for instance,
those which include a kinematic equation, T = —1, and € lies in the
plane where 7= 0. But in many others, ascertaining the useable part is
an early and important step in the solution.

The initial conditions we need for integrating the RPE are then the
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values of z; and ¥; (i = 1,...,n) on the useable part. The parametric

representation of &,
= RS, 81) 4.7.3)

when restricted thereto, gives us the first n. To obtain the ¥, on the
useable part we recall that on €, V= H = H(s,, ..., s5,,). Differenti-
ating with respect to s, gives us

a—H=ZV,.-a£", k=1,...,n—1 4.7.4)
Os, T 0Os,
a set of n — 1 equations for the » unknowns ¥;. The remaining equation
is the ME, with z, replaced by (4.7.3).

Sometimes a double solution to the set will appear. The reason is that
there is nothing in our analysis to distinguish the two sides of ¥. For
example, in a pursuit game, € will often bound a region corresponding to
capture. We are interested only in x’s encountering % so as to pass from its
exterior to this interior capture region. But a game with the reversed
crossing of € as termination also has a valid interpretation.!4

In working problems there is always some simple way of telling which of
the two possible solutions to retain. As a workaday matter, we warn the
novice to be careful; here is an easy point on which to err.

Exercise 4.7.1. Obtain the useable part for the homicidal chauffeur
game, using the reduced space. For % take the circle of radius /:

z = lsins, y =1Ilcoss.

Find the initial conditions on the useable part both for paths which
emanate from € to its exterior and interior.

Our technique for solving problems in the small is now virtually com-
plete. After integrating the RPE with the initial conditions just explained
we obtain the 2n functions «; and V; of the n arguments

Ty 81y e v n s Sp 1 4.1.5)

We should now invert the first » functions and solve for (4.7.5) as functions
of the »;. (This is at times a formidable formal elimination, but in most
particular cases we can get around such difficulties with a bit of ingenuity.)
We can then find V either by inserting the newly found functions in the
second £ integrals, thus obtaining Vy(#,,...,«,) and then integrating
these to get ¥ to within an additive constant, which is fixed by ¥’s known

" If the interior of ¥ was the set of points under surveillance by a detection
device, such as radar, carried by P and E’s objective is to slip out of range and P’s
to prevent him.
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value on %, or we can work directly with {G df + H. The optimal strategies
are known by inserting the », and V, after the elimination, into the
é(x, V) and ¢(x, V,), which accompanied the ME,,

Of course, the solution in the large entails the study of singular surfaces,
and many subsequent chapters will be devoted to particular types.

Answers
Exercise 4.6.1.
F=—(+ g+t L, P=2v,
P
o —3y I/ﬂ % 3,3
y=1+ et V,=—2e"p
P

where 9 = sgn V,, p= N VE+ VA
Exercise 4.6.2,
&= —wsind ¥, =0

%1 = —w, cos Vo=20

Ty = —wy — Va=0
P
;s——WZE I‘}4=0
p
6 = —RW1¢ Vs = wy(V; cos § — V,sin 6)

(F=—sen Vs p=vV+ VD



CHAPTER 5

Mainly Examples; Transition Surfaces;

Integral Constraints

We shall put the theory developed thus far to work by solving several
examples.! Essentially the only type of irregular behavior occurs on what
are termed transition surfaces. The section immediately following gives
an account of these singular surfaces adequate for the ensuing problems.

Our opening example parallels the debut of the calculus of variations.
In 1696 John Bernoulli challenged the mathematical world with his problem
of the brachistochrone or curve of quickest descent. He, Newton, Leibniz,
L’Hospital, and Euler all reached solutions. The variational calculus was
born.

A weight, subject to frictionless, constant Newtonian gravity, descends
from a given starting point to a second lower one. If'it is constrained to
some curved path, which one minimizes the time of descent? The
destination may be a curve instead of a point.

Instead of viewing the falling objett as constrained to a scheduled route,
we may think of it as being steered at each instant by a pilot who can
choose the travel direction freely. For Newtonian mechanics governs only

the speed—the familiar v = +/ 2gh—and exercises no other jurisdiction on
the motion. Thus the pilot may always choose from a circular vectogram,
There is no reason why we cannot imagine a second player, with a
second superposed vectogram, whose object is to maximize the time of
descent. We do so and are in the realm of game theory with the problem
of the dolichobrachistochrone, the curve of slowest-quickest descent.
Section 5.4, following a study of this problem, contains a generic

! This chapter is a re-edited version of Rand Report RM-1486 (25 March 1955),
entitled Mainly Examples, which does not include the section on integral constraints.
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answer to the question provoked. What is the relation between our subject
and classical calculus of variations? . . '

The second problem is a simplified, primary version of a major question
of military policy. In a protracted war, how should a combatant §p11t his
efforts between the long-range objective of attritio.n—desjcroymg the
enemy’s sources of weapon supply—and the more immediate one qf
directly attacking military targets. Simple as is our model, the answer is
pot an obvious one, quantitatively at least. In Chapter' 11 we will Te-
sume this problem with a discussion of its relation to reality, and Section
11.9 will contain a modified version which has a strikingly different
solution. _ ‘ '

The isotropic rocket problem of Section 5.5 is a pursuit game in which
the pursuer, who steers by control of the direction of h1§ fiI'lVl'ng thrust,
chases an evader with simple motion. Like the homicidal chauffeur
model, there is the possibility of a “swerve” under certain conditions, but
unlike it, the solution is generally smooth and analytic rather than segre-
gated by a multitude of singular surfaces. The solution appears to be a
mélange of the straightforward and the unobvious. . ‘

The final problem is an application of our techmques. tq economic
programming. One-player games can . ’t_)e treated by thinking .of .the
opponent as inactive; his range of decision is r}ull. Whgt rem.ams }s a
problem of direct optimization. The present instance is an idealized
picture of steel production in which the current supply is allocated ?etween
use as an ingredient in making more steel, building more .stgel mills, and
the stockpile. What such allocation at each instant maximizes the steel
supply at the termination of the program?

The chapter ends with a technique for problems where one .pla‘yer at
Jeast is subject to a constraint which can be expressed as an obligation to
keep constant an integral over the path of a function of x, ¢, and .
Such is the counterpart here of a classical side condition in the ca.lculus of
variations. Lack of space limits us here to but some new versions of a
famous problem, but the idea is used more fruitfully in the bomber and
battery game in the Appendix.

5.1. TRANSITION SURFACES

This, possibly the simplest and most direct, type of singular surface can
arise only in conjuction with linear vectograms. Let one of tl}e cont.rol
variables, say ¢,, appear lineally in each KE and G (as defined in Section
2.4) with coefficients that are independent of the others. Then, when we
construct the ME, ¢, will appear lineally there too; its coefficient 4 will
involve at most the z, and V.



88  MAINLY EXAMPLES [5.1]
Let a and b be the constant constraints on ¢;:
a<g & <b

Suppose the solution were known at a point x of &, Then A4 is known there,
and so supposing ¢, to be minimizing, we would have at x

$=bifA<0
$r=aif 4> 0.

For definiteness, let us suppose the former holds throughout some
neighborhood of x. Along the optimal paths through these points,
#, = b as long as 4 < 0. But suppose there occurs, as we follow each
path (increasing 7), a point where first 4 = 0. Normalcy implies that
these points constitute a surface .7 .

To ascertain the solution beyond 7~ we can use this surface as a seat of
initial conditions, that is, it plays the role of €, and our standard pro-
cedure will yield optimal paths emanating from it. For initial conditions,
we can use the values of the z; and V; resulting from the integrals of the
RPE that led to 7. (of course, ¥ can be also computed on 7 and then
employed as H there. If we were to apply the standard procedure of
ascertaining the ¥; on .7 in terms of the partials of H, it is not hard to see
that the same V; as above will result.?)

On the new paths, ¢, will be determined by the local sign of 4. Asitis
zero on .7, at the outset we must rely on A. The latter can be found by a
simple calculation which will actually be carried out in general in Section
7.4. It turns out that Ais independent of ¢;,.

Now A4 will be 0 on 7 only for a special class of surfaces which are
detectable in advance and will occupy us extensively in Chapter 7.
Therefore there exists grounds for the assumption that 4 % 0. This
question will recur in better prepared context in Section 7.11.

, We can conclude that when an optimal path crosses 7, where A4 =0,
A # 0, A changes sign and so ¢, shifts abruptly from one of its extreme
values to the other. Thus the name transition surfaces for such as 7.

52. THE DOLICHOBRACHISTOCHRONE?

In the classical brachistochrone problem a body in a uniform gravi-
tational field is constrained to slide down a given curve. Its starting point is
prescribed and so is its terminal position, which may be a second point or,

2 This calculation also entails the ME,. But as 4 = 0 onJ, it is immaterial whether
we use it with ¢, = a or b.

3In this chapter, where examples dominate, example and section numbers will
coincide.
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more generally, somewhere on a given curve. The latter alternative
accords more closely with our ideas; the body is to end its fall at some
point of a specified curve €. We do not know which point and ascertaining
it is part of the problem.

The issue is to find the constrained path which renders minimal the time
for the body, if it starts from rest at the given starting point, to reach %.

If from a stationary start, the body has descended a vertical distance v,
no matter what its path, elementary mechanics tells us that its speed-will be

\/-2237 Only thus does classical mechanics enter the problem. Since it is
clear that the sought curve—the brachistochrone—is independent of g, the

gravitational constant, we may take the speed as being Vy.
In our framework, we think a point capable of being navigated about
the upper half of the , y-plane in such a way that its direction of travel at

each instant is under our control, but its speed is always Jy. Itis clear that
if we navigate so as to minimize the flight time, the situation is tantamount
to the above; the optimal route will be the brachistochrone.

Thus, in the language of differential games, we take as KE

ab=\/;cos¢
j=+ysiné

so that, as we wish, the speed of x = (x,y) is always \/ y, but travel
direction of inclination ¢ is always at our—or rather P’s—disposal. At
each point he has a circular vectogram. Further, an integral payoff with
G = 1 leads to the minimization of the transit time. It is trivial to observe
that the usual convention of coordinates associates positive y with an
upward direction; accordingly we have tacitly reversed gravity and will
not be disconcerted by the “body’s” falling upward.

As our terminal curve %, we will select the positive y-axis. The playing
space & will be the first quadrant of the plane (= > 0, y > 0). Any point
of & can be used as a starting point, providing the “body” or point x is
thought of as having an initial speed = Vy. The positive z-axis is then the
only set of starting points conforming to original framing of the problem.
If the stationary start is important, we can always attain it by the proper
choice of axes, but rather let us accept the modified starting rules.*

In the dolichobrachistochrone problem, the second player E strives to
maximize the time through the addition of another velocity to those of the
vectogram already discussed. He makes his selection from the vectogram
shown at Figure 5.2.1a. The two extreme vectors are each of length w.

4 Sometimes the classical problem is so stated that there is given initial speed along
the curve. This is achieved by using a starting point with a suitable y.
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Figure 5.2.1

One gives him the chance to delay the progress of x toward € by pulling
straight downward, thus impelling x into the region of small y and hence
of low speed available to P; the other extreme vector is horizontal and
directly repels x from € [(b) of the figure roughly depicts a typical instant
of a partie]. The total choice open to Eis a linear convex mixture of these
extreme vectors and so is typical of a linear vectogram. Thus the question
confronting him concerns the circumstances warranting the most profitable
combination of striving directly to draw x away from % or, less directly,
seeking to retard x by driving it deeper into the region of low speed.

Of course, there is a game of kind here t0o.®> For y < w?, E’s speed
dominates that of P and the latter cannot force termination. In fact, by a
suitable alternation of his extreme vectors, it is not hard to see that E can
force x as far away from % as he pleases. As far as possible, we shall ignore
this aspect here.

In the following analysis, the reader may prefer to think of w =0
throughout. The result will be the differential games version of the classical
brachistochrone problem.

The KE are

a’:=\/g_/cos¢+g-(1p+1)

.1/'=\/z78in¢+;—v(w—1), -1<yp< 1.

& It will be discussed in Example 8.6.4.
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with the final terms elided, these equations have already appeared.
The pair of final terms themselves are

(w,0) when yp = 1
and ©, —w) when p = —1 (5.2.1)
so that for the extreme allowed values of y we have the extreme velocities

of E’s vectogram. It is clear that intermediate p complete it in the manner

described above.
As time to termination is the payoff, the latter is integral with G = 1.

The ME, is accordingly

min max [\/-g;(Vz cos ¢ + V,sin ¢) +§(Vm(¢ + D+ V,(p—1))+ 1] =0
¢ v

The min is obtained through Lemma 2.8.1. Putting
NAEaT
the min is furnished by ¢, where
%
P
and the first round parenthesis in the ME, becomes —p.
Since the coefficient of wy in the ME, is
A=V, + 7V,

&

cos$=—K, sind = —

the max is attained by
¢ = sgn A.
Thus the ME, is

—J§p+§[A¢+(Vx—Vy)]+1=o

or
—Vyp+wV,+1=0  whend >0
and —Vyp—wV,+1=0 when4 <O0.
The RPE are, when 4 > 0 (¢ = 1),
z= \/55 —w, V,=0
P
o -V ]
y=Jy— Vo=—7"7=-
Vi =

When A < 0 (§ = —1) the —w term is removed from the equation for #

and 4w is added to that for ;17 Such is clear from a glance at the KE.
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We parameterize € by
=0, y=s52>20

V(=H) = 0.

To find the useable part, we first note that the normal velocity to € is
horizontal and so is given by # from the KE with x =0, y = s. For
penetration of € to be possible by P, against all opposition from E, the
minimax of this velocity must < 0 and so we must have

and on ¥, 2.2

min max £ = min max [\/E cos ¢ + ;—V(y) + l)jl
L2

LY ¢
=—Js+w<0
or the useable part is that part of € for which
s> wh

To complete the initial conditions for integration of the RPE we must
know V,, and V, on the useable part of €. There we have

Vs(= Hs) =0=Ve, + Vy, = V‘ll'

On¥,V,>0. For V=0 on %, and we must have V' > 0 a little to the
right of €, as is clear if we recall that the meaning of Vis the time required
to reach €. Thus 4 = V,, + V, = ¥V, > 0 and so near and at ¥ we may
take = +1. The ME;at € isthen(weput ¥V, =0; as V, > 0,p= V)

sV, 4wV, +1=0
oron %
1
Js—w
which is positive on the useable part. This equation, ¥, = 0, and (5.2.2)
are the initial conditions. We employ them in the integrals of the RPE.
The upper right RPE integrates at once to (5.2.3), which is now con-
strued as holding in at least some of & rather than merely on €. The
casiest way to proceed with the integration is to utilize the ME, (with

g =1):
Jyp=14+wr, =14+ _‘/;

Visw Jiw

Squaring and solving for ¥, leads to
\/s/y - 1

Js—w

Which sign? A quick answer follows from observing that, for large v,

v, = (5.2.3)

V,==%

[5_2] THE DOLICHOBRACHISTOCHRONE 93

P’s higher speed renders the time (= V) to reach % smaller and so ¥, < 0.
A more formal criterion we leave to the reader as

Exercise 5.2.1. Show that to satisfy the lower right RPE, the £ in ¥,
ust be —
Notmg that ~
s 1
p= -\/ T—=
NN

the lower left RPE becomes

S T

which has as the integral with y(0) = s

y= —(1 + cos ——) (5.2.4)

NE

as may be readily verified, provided that
T < m/s. (5.2.5)

Nothing but standard methods are required to integrate the upper left
RPE; the result is

x=7‘/—s+‘—9sm———w~r
Js
The optimal paths are given by (5.2.4) and (5.2.6). If w = 0, we remark
that they express the classical cycloids normal to 4. The generating circle
here rolls on the z-axis, has radius == 5/2 and rotates through an angle
'r/\/s in time 7. The inequality (5.2.5), necessary for ¥ in the RPE to
maintain the proper sign, precludes cycloidal arcs of more than a half
revolution (x cannot reach and then leave the z-axis).
Returning to the two-player game, we have 4 > Oand so Eplays ¢ = 1,
his horizontal extreme velocity vector. Let us see how long this state per-
sists. We see that

(5.2.6)

1— —
A=V, +V,= (_\_/i/y_lz
Ws—w
and A remains positive as long as y > 1s. When y = }s, we should expect
a transition surface (7:S) where E shifts his strategy from § = 1to9 = —1.

From (5.2.4), on the TS, cos -r/\/ s = 0 and from (5.2.5) this implies

o
=¥

(5.2.7)
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Figure 5.2.2

Then on the TS, from (5.2.6) with + = 7,

z = (§+ %)s - w7—2’:\/§ (5.2.8)

Note that in this domain of the first stage paths (prior to the TS)
V=r (529

The equations of the TS are (5.2.8) and y =/2; on it V=1,=
(m/2W/s. Ttisthusa parabola with inclined axis and appears as in Figure
5.2.2. It delineates E’s optimal strategy; he always plays one of his
extreme velocity vectors depending on which side of the TS x lies, as
marked on the figure.

The optimal strategy ¢ of P is expressed in terms of ¥, and ¥, as in the
derivation of the ME,. To the left of the TS, for example,

Vo_ _ ¥

p NES

But a formal expression in terms of x and y is awkward. We would have
to solve the path equations (5.2.4) and (5.2.6) for s and = and use the value
obtained of the former in the above formula.

The optimal paths to the left of the TS, as we can see from their equations,
are generated somewhat as are cycloids. Each is described by a point on
the rim of circle rolling to the right on a platform sliding to the left with
speed w.

cos = —
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To proceed with the solution to the right of the TS requires some
further integration, which, although elementary in principle, appears
rather oppressive. As initial conditions we would have

=i o

1
=— s> wt
\/S_W

and our task would be to use them in an integration of the RPE with
# = —1. The ME, here would be

—py —wV, +1=0.

There seems to be insufficient reward for the tedious formal integration
required.

To establish that such a calculation actually completes the solution we
would need to know that

1. the new paths cover the subset of & to right of the TS and for which
y > w? completely and univalently.
2. A < 0 on this domain (except at the TS where 4 = 0).

Now 1 seems highly plausible (a proof without integration is probably
not too hard). And 2 follows from 1, for along an optimal path

A=-—-L <o
2\/y

5.3. THE RELATIONSHIP TO THE EULER EQUATION

The connection between our approach and the classical one, illustrated
by the last example, when w = 0 will be discussed here in rough terms.
We deal only with planar one-player games with integral payoffs and a
single control variable; more elaborate cases can be inferred from this
instance.

We start from the KE

& = fi(x, y, $)

9 = fol@, y, $)
with

fG(x, Yy, $) dt (5.3.1)
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to be minimized. We can write (5.3.1) as

6.9, 9 4,
fl(x, Y, ¢)

v(=9-rs

and also

We solve (it is generally possible) (5.3.3) for ¢ and substitute the result 4
in (5.3.2), which now assumes the familiar calculus of variations form: 1

f F(z, y, y') dz. (53.49%
The case where F is independent of ¥’ plays a special part in our theory;
and will reappear during our later discussion of universal surfaces.
On the other hand, if we start from (5.3.4), there are many ways of
reaching- the KE and (5.3.1) inasmuch as (5.3.4) takes no account of;
the t-parameterization. The simplest appears to be

%= cos ¢
y =sin ¢
G = F(z, y, tan ¢) cos ¢.

54. THE WAR OF ATTRITION AND ATTACKS®

The two nations, P and E, engaged in a protracted war, have respective
supplies of a vital weapon, #, and ,, at time . Each has at all times the
choice of how to allocate his stock between “attrition,” that is, depleting
his enemy’s rate of weapon supply, and “attack,” that is, entering them in
the major conflict. It is the accumulation of the latter entries that count;
each player seeks more than his opponent, and the excess will be the payoff.

Thus the basic decisions here are between the long-range policy of
attrition and the short-range one of direct attack on the essential targets.
We shall formulate what appears to be the simplest version possible of this
broad problem. It will be discussed further in Chapter 11, where we shall
frame an alternative model in Section 11.9.

The realistic execution of the strategies would comprise a series of
discrete decisions. But we shall smooth matters into a continuous process.
Such is certainly no farther from truth than our assumptions and therefore
can be expected to be as reliable as a stepped model. It also is more facile
to handle and yields general results more readily.

¢ Proposed by Arnold Mengel.

8 [5:4]
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Let P, at time #, split his force z, into the attacking component (1 — ¢)x,
and that of attrition ¢x;. Here @, the fraction devoted to the latter purpose,
satisfies 0 < ¢ < 1. If E'is unimpeded he has the capacity to manufacture
weapons at the rate m,. He also loses them at a rate depending on the
pumber ¢z, his enemy is devoting to that purpose. For lack of better
information, let us take this rate as proportional to the number. Then we

may Write &y = my — cyday)
where the coefficient ¢, may be regarded as a measure of effectiveness of
P’s weapons against E’s defenses.

By reversing the roles of the players we obtain a second similar equation;
they will be two of the KE.

Let us suppose we plan on the war lasting some definite time T.” Each
day (let us say) the combatants put into the field the numbers of weapons
(1 — ¢)z; and (1 — y)z,. The sums of these quantities for each day will
reflect the respective sides’ total battle strength, and difference of such
sums, the margin of superiority. Such will be the payoff except that, in
accordance with our policy of smoothing, the sum becomes an integral:

T
L [(L ~ p)zs — (1 ~ )] dt.

To fit the framework of differential games we adopt T (or @, if preferred)
as a state variable. Then the totality of the KE is
& = my; — 1y,
%y = my — cofpx;
T=dy=~1
with0 < ¢,y <1and G = (1 — )z, — (1 — ).
The space & will be the octant

320, 2,20, T>0

and ¥ will be its partial boundary where T = 0, which may be parameter-

ized as
=520 2=52>0, T=0
these equations being part of the initial conditions.

We shall also suppose

€1 > ¢ (5.4.1)

Teversing the notation if the contrary were true.8
7 Alternatives to such assumptions are suggested in Chapter 11.

®In this type of problem we prefer to eschew such symmetries as ¢, = ¢, as being
too coincidental.

ER
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(5.4.1) the latter occurs first (retrogressively). Thus we should expect a

For the time being, we shall ignore the possibility of «, or x, becoming
TS (transition surface) when

negative. In this way we can get to the heart of the problem with less

encumbrance.
Denoting the partials of ¥ by V1, V,, V., we can write the ME;:

(r=)T== (5.4.3)

where 9 should change from 0 to 1. Such is the case; continuation of the
analysis furnishes a proof. Then at a time 1/¢, short of the end of the war,
E switches from full attrition to full attack.

Let the surface (5.4.3) be called 7 ;. The Value between € and .7, is

given by
T T T
v=["ca= [~ ap ="t~ mr) ~ 62 = mn)ar
0

= (53 — 5T — ¥(m, — m)T2 (5.4.4)

To express ¥ in terms of the state variables, we put 7 = T'in (5.4.2) on
the left and eliminate s,, s, We find that

min max [(m; — ¢,9%)V; + (my — capa)Vo — Vi

[ v
+ =92, —(1—)xn]=0
and the ME, is then

S1x1$ + St +mVi+mVy,— Vp+ 2 — 2, =0
where S, =1 — ¢V, So=—1—oV;

0if S, >0 0if S, <0

d = , §=
an ?=llits, <0’ "Tliits,>o.

Observe the tacit assumption that z,, #, > 0.
The RPE follow: . V= (2, — 2)T + my — m)T2. (5.4.5)
Ty = —my+ 9T 1:1 =S -1 To continue our analysis, we treat 7 as a seat of initial conditions in
By = —my + cypay, V,o=8%+1 the same manner as we did €. We may either place 7 = 1/c,in (5.4.2) and
F_ 1 : again use 5, and s,, but now as parameters of 7, or we may start afresh
- : with new parameters. Choosing the latter alternative, 7, is
the expression for 1/, turning out to be superfluous in this particular game, - 1
Let us complete the initial conditions. As on % we have V' =0, By=8, Ty=S5y T=—
: gt
v =0=V 9z, +7, 0z, + Vg oT =V : where these-s; are not the same as the old. From (5.4.2) on the right we
s, 0s; s, 0s; ) have at once that on 7,
and, similarly, ¥, = 0 on %. There, then, v 1 1
1= — > Vz =
S;= 1 andso =0 G “
S,= —1 andso =0. Of course these two conditions could also be derived in our standard way
_ . ) by using (5.4.5) on I, as H.
Thus the war concludes with both sides fully attacking. ) When integrating the RPE with the above starting data, we shall use
We_ now integrate the RPE, using the above initial conditions with ¢.= 0,% = 1. This usage will be confirmed if it leads to S; of the proper
$ =¢p=0. signs. The reader may find it beneficial to perform the calculation which
x, =85 — myT V= —7 results in 2
y=5y —mgr  Vp=r (5.4 T =51+ (Gsy — my7 — deamyr
_ Xy = 83 — Myt
T=r ; : (5.4.6)
On the optimal paths T=~-+4~
21
S1=1— ¢, Se = —14 ¢ 1 1 1
- —_— e e —_ = 2
and these first cease to be positive when 7 = 1/¢; and 1/c,. Because of ; " N ¢ n W= ¢ T+ 2 ar- (547
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Here 7, as the s;, was chosen afresh as 77, and is not the same as in the
earlier integration. We find now that
c 1
S;=1—2—cyr — = ¢1097°
¢ 2
S, = ¢7.

Clearly S, > 0 when 7 > 0, and we are confirmed in our expectation
that g = 1.

When 7 = 0, because of (5.4.1), S; > 0 and so ¢ = O for small . But
this condition will cease should S, stop being positive. The equation,
Sy = 0, has just one positive root, which is

=1+ /@ejey) = 1.
¢

If we accept this value as marking a second TS and also (very plausibly)
assume there will be no further shifts in the control variables, we have
fully found the optimal strategies in those cases (of most practical interest)

where z; and z, do not become zero.
At time 1/c, short of the duration E shifts from attrition to attack and

P does so earlier, at a time preceding termination by

1 J2(efes) — 1. (5.4.8)
(41

The last value arises, of course, because of the new TS, which we will
call 7, when T = (5.4.8).

Let us now find V between the 7 ; and 77, We can do so in two ways.
First we can write

T-1/e1
V=v"— f %y dt
0

where V1) is ¥ on . ; obtained from (5.4.5) with arguments from (5.4.6).
The integrand =, (= G) is also taken from (5.4.6), and finally we use these
equations to eliminate s; and s,.

The second way is to take V; and V, from (5.4.7), replacing 7 by
T — 1/c,, and then getting ¥, from the ME,. Integrating these partials
gives ¥V to within an additive constant, which can be ascertained by its
known value on J,.

The result is

x m m eym, T3
V=—2-———2—+(—2—— )T —_— T2 — 12, (549
2%, 6 2%, 2 )T+ Heywy — my) 6 ( )
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Observe that beyond 7, G = 0 and there are no further changes in V.
It is then given by (5.4.9) with T fixed at (5.4.8).

We can now accept on heuristic grounds that 7, is a TS and there will
be no further shifts in strategy, or use the criterion to come in Section 7.11,
or continue with the solution beyond 77,. We can then see directly
whether there are further sign changes in S; and S,. We also obtain the
optimal paths in this domain.

We leave the decision and, in the latter case the effort, to the reader.

There remains the embodiment of the constraints x; > 0into thesolution.
The best method seems to consist of first treating the boundary parts of &,
where z; = 0 as 2-dimensional subgames; when the Values of these are
known, they can be used as H and new optimal paths into & can be
constructed which may be merged with the old.

More specifically, let %, be the subset of the boundary of & described
and parameterized by

1’2=S2>0’ T=Sa>0

and €, is defined similarly with the subscripts 1 and 2 interchanged.

Now when the state of a partie (that is, x) is on €;, P has no weapons
(z; = 0), and so it would be futile for E to induce more attrition (take
larger) than is needed to keep ; at 0. It is of course futile in practice
because E would be wasting weapons on attrition that could be used for
attack and so score in the payoff; but in theory, when we view the game as
a purely mathematical problem, we might regard such a limitation on y as
a given constraint necessary to keep x within the bounds of &.

Let us consider the part of €, or %, lying between % and 7, a region
where we know that ¢ = ¢ = 0. Fromthe KE, %, > 0,3, > 0 (intuitively:
the weapon numbers increase with no attrition); therefore at these points
the optimal paths leave €, and ¥, (progressively) and present no problem.

Figure 5.4.1 is a typical cross section of & for some constant fairly
large x;, with the optimal paths indicated. The paths found earlier
between % and .7, appear as those above AB; those below have just now
been discussed. If they are traced back (increasing 7), they each reach %,
at some point of 04 and induce no modification to our analysis.

But on %, beyond .77, where ¢ = 1, it can be that z, remains 0 during
an interim. There can be paths like CDEAB on the figure. Recalling the
KE

x1=09

Ty =my — CPx,

we see that 2, can remain O (such as on EA, as just illustrated) only if

2y >, (5.4.10)
(41

o
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x1

€ 1

employ

p=— (5.4.11) =

until x reaches I, N %, (4 in the figure). For this phase we set up the

subgame as follows:

The state variables are #, and T'(as #, = 0); the temporary & is‘s‘ubjecif :
to (5.4.10) and T > 1/c,. (It appears as the hatched region on the “floor
of Figure 5.4.2, which depicts the & of the original total game.) The

temporary % is given by
z, = o (a parameter) > '6"_1
1
1
51

and H is the Value (5.4.5) at these points:

g (mg — my)
g=2 VM)
¢ + 2¢,®

[5.4]

3
L
g
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The KE are
Ty = my
T=-~1

and for G, in virtue of (5.4.11) and z, = 0, we have

G=(1

We leave the details of this simple subgame, with no control variables, to
the reader. All we will utilize of its solution is, as yielded by certain
integrals of the RPE,

VZ =T
Vp=—"14 2,4+ m,T.

(&1

m,y m,
— _)xz = x, — —1.
C1%, o)

(5.4.12)

Now we return to the original game. We are to construct regressive
paths with partial initial conditions on part of %,:

m 1
Ta=52>—=, T=s>~.
€ G

xl=0a

Putting these values into (5.4.12), we obtain further initial conditions.
The remaining V; is obtained from the ME, with ¢ =0, = 1, the result
being

1
¢

The integration of the RPE with the above initial conditions is done as
earlier in the section. Similarly, as earlier, we investigate sign changes of
the S, along these paths to locate TS.

We shall omit the calculations. It turns out that S, remains positive,
but §; changes sign, but not on 7,. Rather, part of this plane has to be
replaced by a curved surface.

In Figure 5.4.1 the new paths appear as AF and others below it, such as
ED. Below F, 7, is to be replaced by the section shown dashed, where
$; changes sign. The full picture is seen in Figure 5.4.2. The “seam,”
where the new curved surface replaces the old .7, is found by considering
paths emanating from 4B.

What means this modified 7, ?

Broadly, the solution we have found tells us that, for T reasonably large,
both players begin the partie with all their forces devoted to the long-
Tange objective of attrition. Then, at a certain critical time for each

R
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before termination, they switch to all-out attack. These times essentially
depended on the ¢; only; the forces z;, #, and manufacturing rates m;, m,
do not matter. The curved part of 7 ,is an exception. It means that P does
best by switching from attrition to attack earlier, at a time depending on
z, and z,. We seem to have a mathematical confirmation of the reasoning
by P: “If the later part of my attack effort is going to be nullified through
my forces being annihilated, I had better compensate by starting it
sooner.”

There is a similar phenomenon on %,, where x, can become temporarily
zero. It occurs in the hatched area on the vertical “wall” of Figure 5.4.2,
Paths emanate from here into & but do not affect the TS.

Finally, note that the formulas given for ¥ do not hold in the domains
covered by the paths emanating from either €.

Exercise 5.4.1. Find the equations of the curved part of 7 ,. In particular,
show that, as suggested by the figure, sections of constant T are straight
lines.

Exercise 5.4.2. Analyze the situation regarding the paths emanating from
..

Exercise 5.4.3. For both new classes of paths, find ¥ and compare it to the
old.

[5.4 |
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55, THE ISOTROPIC ROCKET PURSUIT GAME

The pursuer P is driven by a thrust of fixed magnitude F,® but whose
direction he can control; in this way he navigates. The evader E has
simple motion with the fixed speed w. The action takes place in the plane
and the payoff is the time to capture.

Of course, without a gain of difficulty in principle, we could assign more
complex and realistic kinematics to E, but in practice we would be en-
cumbered with more state variables, more elaborate KE and a much
more tedious analysis. If the kinematics in the first paragraph were re-
tained, but the roles of P and E reversed, we would have a problem of
about the same difficulty as, and in many ways analogous to, the present
one. If we permitted intermediate navigational magnitudes, that is,
allowed E speeds < w and P thrusts < F, nothing would be gained; for
in optimal play (the reader can verify this) both players would employ
their extreme values at all times.

This problem is similar in broad outline to the homicidal chauffeur
game. But the solution to the latter, although the local motion is usually
very simple, entails numerous singular surfaces and will have to await more
advanced theory. Here the differential aspects of the motion are more
intricate but the solution is much more analytic; a single integration of the
RPE suffices for an entire optimal path, Formally one might say that here
we have no linear vectograms; all max and min are interior; there are no
abrupt changes to and from extreme values which can be subtly taxing.
Nevertheless we will find here a counterpart of the swerve maneuver
(Section 1.5).

We will also burden P with a friction drag taken as negatively pro-
portional to his velocity. There were two reasons. One was that without
the drag there is no bound on P’s speed and, although not too much
realism is claimed for this partially idealized problem, completely uncurbed
speeds seem too shocking a transgression. If the friction force is —k times
the speed, there is, as is well known, a natural limit to the latter equal to
Flk. It is the speed P would come to asymptotically if his thrust propelled
him along a straight line. The second reason is the interesting question
of what circumstances enable P to capture at all if w > Ff/k. Although
such games of kind come later (Chapters 8 and 9), we will be able to infer
the answer here.

If the reader prefers to elide this complication of friction, he can do so
by imagining the & in our analysis below always replaced by 0. We shall

® More accurately F is the thrust per unit mass of P or specific thrust.

I
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indicate the places where such engenders a formal deviation of the analysis
by square brackets.
There is to be a capture radius / > 0, that is, capture is defined as

occurring when |PE| <
We are going to begin our analysis in the realistic space which has six

natural dimensions. Later we will shift to a reduced & with n = 3, which
is minimal. However, the former space makes the analysis easier (if
lengthier to write) and its interpretation more transparent.

To describe a state of P we need to know both his location and (vectorial)
velocity, requiring four coordinates. Two, those of location, suffice for
E. In the standard Cartesian plane let x, ¥ be the coordinates of P and
u, v the components of his velocity. The coordinates of E will be 25 and
yg. The control variable of the former player will be ¢, the angle his
thrust vector makes with the y-axis. For E, p will be the inclination of his
travel direction to this axis.

The KE are then ,
t=u

y=v

= Fsin¢ — ku
o= Fcos¢ — kv
£y = wsiny

Yg = WCOS P.

The first two merely say that the rate of change of P’s affix is his velocity.
The next pair equate his acceleration to the propelling specific thrust less
the drag. The last two relate to E’s simple motion.

As time of capture is the payoff, G = 1.

We shall write the partial of ¥ with respect to g as ¥,z and similarly

for yz. We have then for the ME;,
uV, + vV, + min F(V, sin ¢ + V, cos ¢) — k(uV, + vV,)
¢
+ max w(Vgsiny + V,gcosyp) + 1 =0.
L4

P utting p= \/W

and P =VV.i® + V5

we have, from Lemma 2.8.1,

sin$=—zﬁ, cos$=—&
P P
sinzﬁ:K“-”E, cos¢=E’E.
PE PE
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Thus we obtain for the ME,
uV,+ oV, — Fp — k(uV, + vV,) + wpg + 1 =0.

Our standard procedure leads to the RPE:

:§=—u, i}fc=0
§=—U, I(}y=0
o V o
u=F-4 ku, V,=V,—kV,
p
v, o
v=F-2+ ko, V,=V,—kV,
P
| 4
§E=—W~Z—E-, f}wE=0
PE
o |4 o
yE=_wLE’ yE=0-
PE

Now let us turn our attention to . It is the surface in & characterized
by |PE| = I. We depict it by five parameters

x =48
Yy=3;
U=y,
v=ys,

zp =5 + Isin 54
yg = Ss + I cos s;.

Here the coordinates germane to P are labeled freely, but E is picked a
distance [ away from (sy, 5,) so that the vector EP has an inclination with

the vertical equal to s5.
To find the useable part, put r = |PE| so that

r? = (v — x)* + (yg — ¥)*
Then for the points of €
If = (I sin s)(w sin ¢y — ) + (I cos sg)(w cos p — v).
The useable part, being specified by

maxr < 0
v

e



108
is here those points of % for which

MAINLY EXAMPLES

w — sy 8in 55 — 5, cos 55 < 0.

Exercise 5.5.1. With a vector diagram obtain this result geometrically, §
If the capture region is thought of as a disk centered at P, interpret the §
useable realistically (P can only capture with the forward portion, de.]
pending on his speed, etc.) ]

Let us complete the initial conditions by finding the ¥; on €. As here, §
clearly V(= H) = 0, we have

W o=V, + vy
0s,

Vo =0=V,+ Vg
Ve=0=V,
1/34=0=V;)

Viy = 0 = (Vg cos s — V,p sin s).
From the last equation and then the first two, for some 4, :
;; 3
—Vy=V,g = 2sins
o ’ (552,

—V, = V,g = Acoss;.

If we now substitute these V; into the ME, we will have an equatloni
for A. There will be two solutions corresponding to contact with % (1f
considered as a circle about P) from inside and outside. Here we are

interested only in the latter.
Let us take s; = 0. For x on %, then we will have E a distance [ directly

above P. Move E up slightly (increase yz); then V will become positiv
Therefore V,z > 0 when s; = 0. The last equation above shows that
A>0. !
Substituting now into the ME, yields
—A(sgsinsg + s,co855) +wl+1=0

(Observe that on €, p = 0, but p = |4|; it was because of the latter that
we needed to know sgn 2.)
Thus
1

53 sin 85 + 5, CO8 55 — W

A=

which is positive on the useable part by (5.5.1).
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We are now ready to integrate. Treating the ¥, first we at once see
that (5.5.2) holds along the optimal paths (not merely on %) because from

the RPE the relevant V are all 0. The third and fourth right RPE integrate
to

- pkr
V, = —A(sin s5) l1-e
1 ~—Kr
V, = —2(cos s5)
[if k=0, these become V,, = —Arsins;, V, = — A7 cos 55.]

At this point we can profitably return to the optimal strategies. Noting
that

—kr
p=A = [ itk =0)
) pr =4
we find that
sing =sins;, cosd = coss,
sin ¢ = sin s, COS P = COS 55
or $ =P ==¢;.

Here is our first significant result. Under optimal play both control
variables will be constant and equal, that is, E flies a straight line and P
maintains his thrust vector in a constant direction.}? Further, this
direction is the same as that of E’s path. The final equalities state that at
capture P will be directly behind E (in his flight direction sense).

Problem 5.5.1. How much of this result depends on the KE and how
much on ¥? How would it be changed with a different type of termination
(say a less regular capture region than a circle)? See the missile trajectory
problem in the Appendix for such a discussion of a related problem.

The quantitative problem of the optimal strategies is now reduced to
finding the above mutual direction. It will of course be a function defined
over €.

We now integrate the left RPE. The results are, as the reader may
easily check,

& — M — 1 — kr

1 .
) + F(sin sg) ¢ pE;

x=s1—ss(

ek' F( . ) ekr -
u=s —_ sin s,
? ? (5.5.3)

g =s; + (I — wr)sin s;
1 With no friction (k = 0), P’s path then lies on a parabola.

Er
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and ¥, v, ¥z have similar expressions except that sin s; is replaced by
cos Sg, and sy, S3 by Sz, 55
[If k = 0, the first two expressions become
@ = § — S7 + 4Fr?sin s;
u = s3 — Frsin s5).
The next step in a full formal solution is to solve these six equations of

the state variables for the six unknowns, Sy, ..., S5 7. In particular, the
resulting 7 (2,9, - - . » yg) or 7(x) will be V.

If we define
~kr __
0()=1—wr+F e___k:_+_’_¢z (5.5.4)
a short calculation shows that
1—¢e™ .
Ty — T — X u = Q(7) sin s5 (5.5.5)
and similarly
1—e™
Ye — Y — v = Q(7) cos 55 (5.5.6)

[For k = 0, the above becomes
Q@) = I — wr + }Fr?
g — & — ur = Qsin s, etc.]

We can now eliminate s; by squaring and adding (5.5.5) and (5.5.6).
To do so leads us naturally to the type of coordinates that we might have
used in a reduced &.

Let r be the vector (z; — @, ¥x — ¥), the displacement of E relative to
P, and u, the velocity vector (1, v). Then when we square and add, we
obtain

rt — 2+ Wl (Lik—"i) +u (%); 0@ (557)

an equation that is to be solved for 7 = V.
[For k = 0, (5.5.7) is
2 —2(r wr+ ur? = Q2]
Observe that Q is a fixed function for a definite game; it does not
depend on the state variables-but entails only parameters. A plot of Q for
F=3, w=2 I=1 k=1 (5.5.8)
is given in Figure 5.5.1.

11 A scalar (inner, dot) product.
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The left side of (5.5.7) entails all the state variables that would appear in
proper reduced &, as we shall soon demonstrate explicitly.

Let us make a tentative assumption whose significance will be discussed
later:

o»H >0 forall + > 0. (5.59)
From (5.5.4) we see that
F
o(m) ~ (£ - W)f, T—> (5.5.10)

so that our assumption (5.5.9) requires that F/k > w!?* or P’s limiting
speed exceeds that of E.

Note that the left side of (5.5.7) is bounded for 7 > 0. Further, it is
always positive. For, regarded as a quadratic, its discriminant is negative
by the Schwarz inequality.

We see that for any interior point of &, (5.5.7) will be satisfied for some
positive 7. For when 7 =0,

left side = r? > /2 = Q(0)? = right side

and, for large 7, this inequality, as the preceding lines show, will be
reversed. Let 7, = 74(X) = 7¢(%, ¥, - . . , ¥g) be the smallest such solution.
. [For k = 0, (5.5.7) is an algebraic equation of degree four. As above,
inequalities for large and small 7, show the existence of a positive root.]

This step of solving the transcendental [algebraic] equation (5.5.7)
essentially completes the computational solution of the problem. For

12 Let us spare ourselves the coincidental case of Flk =w.
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Figure 5.5.2

7o(x) itself will be V(x). Putting 74(x) for = in (5.5.5) and (5.5.6) enables us
to find a unique function, ssy(x) defined throughout &. The optimal
strategies are

§=9=s5x (5.5.11)

We shall leave much of the formal verification to the reader. If a partie
starts from x and the players use the strategies (5.5.11), holding them
constant during play, he can verify that the function o, calculated at each
succeeding position, decreases at a unit rate. After a time 7,, then, 7, will
be zero (this is why we must use the smallest root) and r will be / and be so
for the first time.

But it is much more enlightening to translate into the tongue of a
reduced space. The new & will have three dimensions, and we can envisage
the whole action clearly.

Let P and E be as shown in Figure 5.5.2a with the arrow denoting P’s
velocity, which has magnitude v.®* The relative coordinates, X and Y,
shown for E are measured parallel and normal to this vector. We take
X, Y, v as coordinates in our reduced space. In it & appears as a cylinder
of radius I centered on the v-axis (Equation: X2+ Y% =[?%), and & is
defined as the half-space (X, Y, v withv > 0) deprived of the interior of this
cylinder as shown at (b) of the figure.

To translate (5.5.7) into these terms we observe that

l.2__.X2+ Y?
rru=vY
u? = 1?

13 Not to be confused with the old », which we shall not use again.
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so that (5.5.7) now appears as

X4 |:Y— v(l ‘ke_kr)]; 0%(). (5.5.12)

for X2+ (Y — v7)? = Q% when k = 0.]

We shall now examine the surfaces (5.5.12) in & of constant 7. If, for
the moment, we also fix v, (5.5.12) is the equation of a circle with center
at X =0, Y = v (1 — e*)/k and radius Q. Thus the surface we seek is a

cylinder of this ‘“‘radius” whose vertical sections are circles and whose
axis is the line

1—¢e™
X=0 Y=121 . , v=24, 0 A o0,

When 7 = 0, note that this cylinder becomes €.

Figure 5.5.3 is a rough sketch of how the family of cylinders begins,
that is, with 7 small. Figure 5.5.4 is a carefully drawn cross section at
v = 2.5 for the particular data (5.5.8).

Observe how the circles of constant 7(= V) for low values have a
prominently visible envelope. The two curves of this envelope meet % at
the boundary of the useable part. Our rejection of all but the smallest
solution of (5.5.7) is interpreted here as the discarding of all the circles
(for small ¥) except their upper arcs which span the contacts with the
envelope. Thus between the envelope components we see a smooth
family of curves of constant ¥ (so labeled in the figure) which merge with
the useable part of %, which of course is on the locus of ¥ = 0.

At about ¥V =2, we see that the envelope terminates. The circles
burgeon from here on, and we only delete those arcs which would cover

— Y
== 4
v | (4]
|
\\\ x

Figure §.5.3

R
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territory already labeled with smaller V. For all sufficiently large ¥ (not
shown) we retain the full circle.

The envelope is a section of a surface in two parts in & of a species that
in Chapters 8 and 9 will be called barriers. Here the barrier is tangent to ¢
at the boundary of the useable part. It is a surface that is never crossed

during optimal play and marks discontinuities both in ¥ and the optimal
strategies. It delineates those starting positions leading to an optimal
play which is a simple, direct chase from those involving a what we might,
analogously to the homicidal chauffeur game, call a swerve.
Sg
c —=
P l CE
(\ Sp
" (@)
; 2
0.8 A ,:
2 A i
4 :g Sp
4.5
‘ }
[ )
: i % CP
I Figure 5.5.4 7
! 1 V.
Ce
Figure 5.5.5

LTI
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If the starting position is a point nestled between the barriers, such as 4
in Figure 5.5.4, the resulting play will be of the direct type; E will trave]
away from P with the latter dogging his heels. In this reduced space, for
starting positions such as B outside the barrier, the resulting path in & will
begin by first receding from €, then skirting the barriers, and reaching ¢
via the alley between them. “Physically” this means that the kinematics
of P render him undeft enough to catch E directly; P cannot veer enough
from his course to thwart E’s sidestepping. Hence P must at first lower
his speed so as to make a sufficiently sharp turn and then go after E, who
has by now fled to a position roughly rear of P’s starting point.

The realistic behavior of P and E are shown for these cases in Figure

5.5.5, (a) and (b). Here Sp, Sg denote the starting points of the players .

and Cp, Cy their positions at capture.

At b, E “swerves” to P’s rear, penalizing the latter by forcing the sharp :
turn. P, an optimal player, anticipates the ploy; he points his thrust

accordingly in a concordant direction (which is that of E’s path). Even
though the starting position at a is only slightly different, E could not get

away with the same maneuver here; he would be caught abruptly if he

headed tailward. Note that ¥(4) = 0.8, while V(B) = 3.0.

We can see now some significance in the assumption (5.5.9) that Q0 > 0.
Were this not so, the “radius” of the cylinders of constant ¥ would some-
where shrink to zero and the two barrier surfaces would intersect. We
shall anticipate Section 9.3, where this question is more fully discussed, by
remarking that, if the barrier is cut off beyond the intersection, the re-
maining surface appears to bound with € a portion of &. For starting
points within this portion the preceding analysis is valid. For external
starting points, if E plays properly, P cannot capture at all.

Thus, as was remarked after (5.5.10), if P is to be able to capture from
all starting positions, F/k > w is a necesary condition. It is not sufficient,
however. (See Exercise 9.3.1 or (9.3.7) if k = 0.)

56 AN OPTIMAL PROGRAM OF STEEL PRODUCTION

Here we demonstrate, by a simplified example, how our methods can be
applied to certain production programs so as to attain the maximal yield.
To fit our conceptions, the situation is best supposed “differential”; the
discrete steps of actuality must be smoothed into continuity. What we
obtain is a long-term view or a rounded-out picture.

A nation or other large enterprise embarks on a program of steel pro-
duction. We will suppose, as is actually reasonable practice, that a certain

amount of extant steel is to be an ingredient for the manufacture of

additional steel. At any time the current supply of steel is to be allocated
between this use, the manufacture of more steel mills, or the stockpile.
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Our desideratum is to maximize the latter category at the elapse of a
specified time 7. How should we proceed? We might conjecture that at
the outset, for example, all effort should be devoted to augmenting the
number of mills; when this number is great enough we proceed at high
plast to produce. When should the transition occur?

At any time ¢ let M be the number of mills existing and S be the
current supply of steel. Let y,, be the fraction of steel devoted to building
more mills, yg the fraction devoted to making more steel so that

wM>09 ws>0’ 1/’M+1,Us<l.

Since S is the amount of steel allotted to mill building, we can write,
supposing a linear relationship,

M = Cy)MS

for some ¢ > 0. In a unit time let the quantity of new steel that can be
made from a unit of the old be @ > 1. Then the rate at which new steel is
produced is aygS, but steel is consumed by doing so at the rate gS.
Besides the steel allotted to mill building is an irrevocable deduction from
the current supply and its rate is y,,S. Thus

S = aysS — psS — YuS.

A third state variable is 7, the time until the end of the program.
Therefore we have for the

KE: M = cyy,S.

$= Sla — Dys — vul
T=-—1.

The number of exant steel mills sets a bound to the output of new steel
production. Therefore, for some b > 0, we must operate subject to the
constraint -

apgS < bM
or pe< M (5.6.1)
aS
Thus in this problem the control variables will not always be subject to
constant bounds.

For & we have the octant of 3-space: M >0, S >0, T > 0; % is the

surface where T = 0, and we parameterize it by the partial initial conditions:

M=s52>0
S=52>0
T=0.

R
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The payoff is terminal, for our goal is to maximize S when T = {
Therefore

MAINLY EXAMPLES

H = s2’ b
The constraint (5.6.1) is effective only when bM < aS. If we def u
R=S-— (-}Z)M
a

we can say, only when R > 0. Accordingly we divide & into the two pa ¥
&, where R < 0, and &, where R > 0, by the quarter-plane # on whig
R = 0. In &,, there are ample extant mills to handle all the steel, but i
&, the upper limit on production rather than a supply shortage is incurrg
by a mill. Figure 5.6.1a depicts &; note that the vectograms have td

S

®
®
T ¥m @0
)

Figure 5.6.1

angular headplanes in &, and trapezoidal ones in &,. Such are engende
by the constraints on the control variables which limit them to the sha
regions shown at (b).

The ME, is

max {cSVypp + SVsl(a — Dyg — vul} — Vr = 0.
v

To find § we observe that, in either &; or &,, we are maximizing a lin
function of y,,, g over a convex polygon. The maximum will alw
occur at a vertex. In Figure 5.6.2 we have written the value of the brac¢
the ME, at the appropriate places. The vertices will be denoted by
numerals encirlced in the previous figure, and the corresponding value:
the brace by m; (j=1,..., 5). We will also refer to the local strategies] :
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these numbers, for example, at 4, py = 1 — bM/aS, pg = bM/aS. Of
course, 1,2, 3, applyin &y and 1, 2, 4, 5, in &,.

when we derive the RPE, the nonconstant bounds on v necessitate a
modification of our standard procedure. The change is simple; when
differentiating the ME with respect to a control variable, we include its
appearance as an argument of ¢, or pg. Inasmuch as the ME, will
always be one of

m—Vp=0, j=1,...,5 (5.6.2)
the RPE are

M = —cSipy, Vi = 0m,JoM

§$ = —Slla = Vs — Ful.  Vg=0myos

T=1 Vr=0.

v
1IN mg=SW(a~-1)
a=1

ms = Vs~ bM my=cVig(S—2 0y + vy 6M = )

mg= CSVM"' SV&

Figure 5.6.2

We make some general observations.

The value of the maximizing m; is constant over all of any optimal
path. (5.6.3)

For when ¥ is smooth, (5.6.2) and the final KE show that ;5;, = 0. Ata
transition surface one m; will supplant another, but they must have a
common value at the junction. At a crossing of %, ms, m,, mj; coalesce
and so are numerically equal.

Al
ways Ve>1, V>0 (5.6.4)

For suppose, starting from a point (M, S, T) of &, we play optimally.
If the steel were initially augmented by an amount S,, we could ignore the
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increment and use the former strategy. Thus we could get a payoff at
least equal to the old Value + S;. The second inequality follows similarly
if we ignore an increment of M. We can certainly use the old ¥, ¥, the
constraint (5.6.1) being now the weaker.

Never is m, optimal.* (5.6.5)

For, from (5.6.4), it is always dominated by mj or m;.

If we put Q= cVy— Vs
then

The initial conditions are completed in the usual way; on €

V=20, ;=% _ 1.
S g
We turn now to the solutionin &,. Ason®, Q = —1, R > 0, we have,
from (5.6.6) my > m,
and from (5.6.7) my < 0.

As mg > 0, the max m; at % is m, that is, g = bM/aS, §pr = 0. All

steel and no mill production appears reasonable near the end of the

program.
The RPE are here
) o am
) M 8 oM
S = —kM, Vg=0
T=1, Vp=0
where we have written, for short,
k=bh a—1 .
a
The integrals are
M = Sl VM = k’r
S =5, — ksy7, Veg=1
T=r VT=m5=ks1-

14 It will turn out that neither is m, ever optimal. Is there a way of establishing this
fact at this stage?

my — my = QR (5.6.6) —
and my = QS (5.67) ¢

The m; of Figure 5.6.2 and a simple computation give these results. J|
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Consequently,
Q=ckr—1

R=s,— (é)sl — s5:kT.
a

When 7 = 7y = s/s;k — blak, R vanishes; the path leaves &,. When
r = 7o = l/ck, Q vanishes; we should expect, by (5.6.6), the dominance
of mj to be yielded to m,. On any path one or the other occurs, depending
on the relative magnitudes of =, and 7,, which depend on s,/s,. It is not
hard to show that the two classes of paths together fill all of &, with
T < 7, and intersect all of points of # subject to this inequality. The
surface, which we shall soon see to be a transition one, consisting of those
points of &, for which
a

alr— (5.6.8)

T=m,

similarly is met at all points.

It is clear that m, is out of the running, for from (5.6.7), m, < 0 as long
as S >0and r < 7,

Now let us turn to paths on the far side of the TS. As initial conditions,
we use (the s; are fresh parameters)

M=Sl, VM=k"'2=1
c
S = Sg, Vs =
T = 7,, Vi = ks;
Taking 4 for strategies, we now have the RPE:
M= —cS(l - Iﬂ) =—cR Vy= b(—fVM + Vs)
aS a
S=—bM+5 Vs=cVy—Vg=10Q
To‘ = I‘}T = 0.

We shall obtain full results pertaining to the optimal strategies without
integrating these equations, although to find ¥ we may have to do so.

As long as a path remains in &,, R must be positive. We shall show that
Q, which equals zero for 7 = 0, is otherwise positive. From (5.6.6), such
will imply that m, > m;.

We have

o

Q=bc(—£VM—Vs)"'Q
a
= —k1Q+ Csz
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wherek; = 1 + bcfa > 0. The elementary formula for the integral of such 3
a differential equation, with Q(0) = 0, gives us

Q0= cke"“’f e (u) du
0

and so, from (5.6.4), our result follows, as exponentials are always positive, -3
We now show that m, cannot dominate; it follows that m,’s sway is &

permanent. From Figure 5.6.2 and the RPE

m4—m2=—£§MVM+MVS=MVM.

Iné&, M > 0and onthe TS, as a > 1,
I°’M=b(—1+1)>o.
a
We assert that IO/M remains positive. If it did not, let 7, be the lowest r
for which 75, = 0. From the RPE, at 7 = ,,

ci;M:b(—EIC}M+IZ)=b]Z=bQ>O-
a

But it is absurd that the derivative of f}M be positive at its lowest zero, §

Finally we shall show that this class of optimal paths completely fills the &
part of &, beyond the transition surface. Let (M, S, T') be a point of this
set, so that R = S — (b/a)M > 0. The progressive path from this point
will satisfy (reverse the signs in the RPE)

M =cR
S=bM-—S
T=-1

and so

R=bM—S—-lZER.
a

If at some later time R equals zero, let #, be the first such point. Atf, |
bM = aS and %i
R=bM—-S=(@—1)S>0. ;

|

and we have the same type of absurdity as before. Let us note in passing,
had we started from a point of R (with strategy 4), this same reasoning
shows that R > 0 and so the path would (progressively) enter &,.

Thus R > 0. As M > 0,also M > 0and S = R + (b/a)M > 0. Thos |
the path remains in &,. Ultimately it must reach the transition surface and |

:
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so be the reverse of one of our retrograde paths. Thus &, beyond the TS
is filled; besides a path goes through each point of Z.
Finally, we treat ;. We shall show that everywhere here
, my > m, (5.6.9)
and, in view of (5.6.5), the optimal strategy is fixed at 3.
On ¥, from Figure 5.6.2 and the initial conditions,
my = s)(a — 1), my = —3y

and 50 (5.6.9) holds. Italso does on Z for each point there is met by a path
from &, on which m, or my; dominates and these agree with m; on 4.

We now show that if (5.6.9) holds at the initial point of a path, it does
so throughout. The RPE here are (§g = 1, $,, = 0)

A°4=Oy I(}M=O
S=—S@a=1, Vg=Vga—1)
T=1, Vp=0

with the general integrals (the subscript 0 denotes an initial value)
M = MO;
S = Soe—(a—l)r’
Then, for 7 > 0 (or 7,)
my, = S(cVM — Vg = Soe—(a~1)r(cV1u0 _ Vsoe(w——l)r)
= SO(CVMOe_(a-l)r - Vso) < Myg.

V= Varo

V= Vomie-t (5.6.10)

As m, remains blow its initial value, and mj, by (5.6.3), remains at its, our
result follows.

Finally, it is easy to see that the retrograde paths of (5.6.10) (left),
emanating from ¢ and Z, will fill &, completely.

The complete optimal strategies are mapped in & in Figure 5.6.3. In
&,, where there are more than enough mills, we should, as we have just
learned, devote all steel to steelmaking. But one typical possibility is
shown if we start at the point X of &;. We make steel exclusively until we
have enough to saturate the existing mills. Then X is at A on #. From A
to B the mills are used at their full capacity and the excess ingredient steel
is used to build more mills. At B, time afbc(a — 1) from termination, we
continue capacity manufacture but stop mill building and stockpile the
excess. We so continue until C, which lies on %. .

As our description of the optimal strategy is complete, and of the paths
at least qualitatively so, the Value can be computed by routine integrations.
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Figure 5.6.3

57. INTEGRAL CONSTRAINTS

The contents of this section will apply to a problem in the Appendix but
will not be used in the ensuing text itself.

In the classical calculus of variations there are problems where the paths
are restricted to those which render prescribed constant values to one or
more given integrals. The relevant generalization here is

fL(x, é, p)dt=C (57.1)

the integral extending over the path from the starting point to €. We will
deal with a single constraint of the type (5.7.1); the generalization to more

is obvious. ' .
We introduce a new state variable and adjoin to the kinematic equations

d:n+1 = —L(X, ¢9 W)- (5.72)

The new € is the same as the old with #,.., = 0. Following our usual
procedure we discard all starting points but those lying in the plane:

,,, = C. The condition (5.7.1) must hold and our general technique
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ensures the minimax with respect to ¢- and y-strategies under this con-
straint. Often the above new € will be deficient in dimension. We then
can proceed in our usual way (Section 2.3): surround the terminal curve
by neighborhood of radius J, use the boundary as € and take the limit as
é—Q.

But an alternative procedure seems more logical. The purpose of a
d-neighboring surface is to supply initial values of the ¥;. We can do so

directly by taking Vo= —1 (5.1.3)
at+l — T o

where A is a parameter that can label the family of paths emanating from
€ (which is of dimension n — 1in an (n 4 1)-space and so should normally
not seat an n parameter family of paths). Together with the usual n — 1
initial conditions (on %)
Vsi=EV,-ai", i=1...,n—1
i as;
and the ME,, we have n + 1 equations to be solved for V3,..., ¥, in
terms of 5, . ..y Spps A
The only KE in the augmented set in which z,,, appears is (5.7.2).
Hence one of the RPE will be .
Vo = 0. (5.7.9)

It follows that 4 will be constant over each optimal path, retaining the
value it had on %.

The advantage of all this is that there are significant instances when we
are interested in the restriction (5.7.1) only superficially; what really
concerns us is

fL(x, é,p)dt < C. (5.7.5)

In practical problems such happens when there is a resource (fuel, time,
etc) x,,, with a limit which one of the players must not exceed. Usually
we can expect that optimal play demands that he exhaust all the resource
allotted him; then a condition (5.7.1) suffices to express the constraint,
although (5.7.5) is the literally true criterion.

But there are cases where too much expenditure of the resource, even
though allowed, is deleterious. Such is manifested from the point of view,
say, of the minimizing player P, at a state (point of &) by

av
ax'n+l

holding there. In view of (5.7.3) and (5.7.4) this condition means that
A<0

>0



126  MAINLY EXAMPLES (5.7}
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™

(a) (v)
Figure 5.7.1

at the relevant point of &. Hence we attain the optimal expenditure of
resource by the restriction on the initial conditions of

2> 0. (5.7.6)

Of course, when the integral may > C, but not fall below, we work only

with 4 < 0. o .
Let us make this all clear by a simple yet general graphic 1llustrattor}.
With n = 2, take KE of the usual form & = f, ¢ = g, so that the ME, is

V.f+V,g+G=0 5.7.7)

where the bars indicate that the usual ¢ and ¢ appear as arguments. In
Figure 5.7.1a, %, specified by x = X(s5), ¥ = Y(s) and on it V' = H(s),
and the optimal paths are shown, assuming the solution to have been
attained in our customary way. The part of the plane above ¥ is &.

Now let us consider the new game which arises when we adjoin the

strict equality constraint (5.7.1). To the KE is added
= —L
and the new ME, is now
V,f+Vg+G—-Lv,=0 (5.7.8)

and we should note the & and ¢, functions now of z, y, V,, V,, V,, are not
necessarily the same as in (5.7.7) and thus neither are f. 8, G. o

Figure 5.7.1b shows the enlarged &. Note that the new € is in the
u = 0 plane and is otherwise the same as the old:

z= X(s), y= Y(s), u=0. (5.7.9)

The new & consists of the points above the surface which is the u-trans-
lation of %, thus of z, ¥, u such that (z,y) €old &, u > 0.
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The set &y defined by 2,y cold &, u = C, is comprised of starting
points such that the constraint (5.7.1) holds.

For initial conditions we now use first the values (5.7.9) of , ¥, uand the
values of the V; obtained by solving simultaneously

X'(9)V, + Y'(s)V, = H, (as in the case of no constraint)
V,= -4
and the new ME (5.7.8) with the values (5.7.9) as arguments in f, g etc.

From the RPE—the old ones with # = L and ¥, = 0 added—with the
above initial conditions we obtain a two-parameter (s and 1) family of
paths emanating from €. That is, from each point of % there is a family
of paths, one for each 2. We may expect that the paths will meet & in a
subset Z of it as indicated in (b) of the figure.

Suppose we wish the solution of the constrained problem with a specified
starting point 2°, y°. Then we find the corresponding point (2°, 4°, C) of
&¢. Ifitlies in £, then the path through it will be the optimal one for the
augmented game; and the projection of this path on the plane: u =0
will be the optimal one in the original space.

If the point (22, ¥°, C) lies outside of %, then there is no path, which
means, in the original terms, that it is impossible to get from the starting
point to & without violating the constraint. In practice, the boundary of
4, which delineates those impossible cases, may usually be identified as
the limiting curve in &’ where 1 = co.

Note that on starting points of the curve in & for which A = 0, optimal
play is the same as in the original unconstrained game. Forif ¥, = 1 = 0,
it is clear that formal calculations of the original game are unchanged
when we adjoin the constraint. The paths of (b) in the figure for which
A = 0, when projected on the = 0 plane, are the paths of (a).

Now let us turn to the case of the one-sided constraint (5.7.5). We shali
assume that, in an effective two-player game, the constraint integral is
governed by one player alone. For otherwise we might expect such
phenomena as the opponent striving to violate the constraint; for the
game to retain sense, he should reap a bonus in payoff if he succeeds and
such appears to require a basic reformulation of the original rules.
Certainly our assumption holds in many cases derived from reality. For
example, if one of the players controls a moving craft, the constraint
integral might express a range or fuel limitation and it would be this player
alone who regulates its expenditure. For definiteness we shall take P, the
minimizing player, as enjoying this control.

The admissible starting points are now the set Q defined

(z,y) €&, 0<ugC
for such and only such ensure that [ L < C.
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Y A=co
A>0
c
K
A0
€ %0, Y0 J
Wil
Z / ////
/ u=C *
yd ®)
X
(a)
Figure 5.7.2

Now Q will be cut by the surface £ on which 4 = 0, as shown in
Figure 5.7.2a, which meets the plane where u = 0 at € and meets £, ata
curve we shall call #,. We shall assume an orientation which, in our
figure, reads: 4 < 0 below £ and 1 > 0 above £.15

Suppose now we are assigned a starting point 2% »° in the original
problem. In the constrained problem we are at liberty to use any starting
point on the horizontal line through Q: z=2°% y=¢° 0 < u < C.
The optimal will be that one where V is least. Suppose first the point
20, % in &¢ lies below £ . Then the horizontal line through it will meet
& at a point K. As we know, from the KE, Iju = 0, and the initial
condition, V, = —A, that V,, = d¥/ou = —A throughout Q, V will vary
along the line as at (b) of the figure. For to the right of X, ¥, > 0, at
K, V, =0, etc. Thus the minimum occurs at K; it should be the starting
point under optimal play. As

det:u(atK)<C,

the optimal path should be the same as if there were no constraint, and
P may ignore it.

On the other hand, if 2%, #° (on &) lies above %, then on the hori-
zontal line,

v.=Y_ _i<o
ou

1* We shall not stop to investigate the validity or alternatives to this assumption.
It would appear to hold in most realistic cases.

" (5.7] INTEGRAL CONSTRAINTS 129

and the best starting point has u = C. For x,, y, on Z o, of course, best
play is along the optimal path where 4 = 0 and the constraint if fulfilled
exactly but without sacrifice. Thus we can conclude:

In the augmented game, when A < 0 at the starting point, optimal play
is the same as in the original unconstrained game but it must be altered
when A > 0.

Note that if the maximizing player controls the integral, this statement
is still true if the adjoined KE is taken as V, = +A.

Research Problem 6.3.1. What are the formal conditions that dictate that
f L dt is under the control only of a particular player.

For a pristine example we revert to the simple classical problems of the
isoperimetric type. They concern curves of specified length bounding, or
artially bounding, with diverse end conditions, the maximal area. The
textbook standby has the curve joining two given points in the upper
halfplane; the area beneath, in the sense of elementary calculus, is to be
maximized.

Example 5.7.1. A classical isoperimetric problem. To translate to our
terms let the curve be described by a point moving with unit speed.
Thus we write the
KE

& =cosy

j = sin y.

As the area beneath is | y# dt we take
G=ycosy.

Because of the unit speed, arc length is the same as time and so to form

(5.7.1) we take

L=1.
Thus the additional KE is

T=-1
We are led to the ME,

max [(V, + y)cos p + V,sin 9] — Vp = 0.
v

Putting
p=VV.+ 9P+ 7}
we have
coszp=V“+y, sinz/'1=E
P P

LR
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and the ME, is p—Vp=0
The RPE:
° o —at® o _,
x = x =
g v,
j=—1 f, ==t
] P O P
T=1 VT=0'

We can see at once that any integral path of this system is an arc of a
circle. For V¥, and Vj are constant; from the ME,, so is p- Tl}e linear
subsystem of differential equations for y and ¥, have the familiar integrals

y+ V.= C,cos (-T- + Cz)
P (5.7.10)

V, == C,sin (Z + Cz).
P

Finally, we note from the RPE that z differs from —V,, by a constant.
To illustrate the initial conditions, let us take as the original % the line
% where « = X > 0 and starting points with z < X, ¥ >0,T> X —u.
We wish to find the curve of specified length T extending from this (z, )
to some point of % which subtends the maximal area beneath it.
The final € is s=X, y=s(30), T=0.

Onit V,(as V=00n ¥)=0=V¥,and

Vp=A
In virtue of our discussion we limit ourselves to
A>0.
Then also on %, using the ME,,
p=1V,+sl=A

As the nature of the paths dictate that #(0) < 0, the first RPE shows that
on%, V, +y > 0. Then the initial conditions are completed by

V,=4—s.
Tailoring the integrated RPE to fit these, we have

x=X—lsinI

A
=s—l(1 -—cosi)

T=n.

(5.7.11)
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Clearly our curve is the arc of a circle with radius A and center on %
with ordinate s — A. Obviously if T is within reasonable limits, there will
be just one such arc of length 7, ending at (=, y) and meeting % at a point
above its center. This is the well-known classical answer,

We make the obvious observation that from the ME,

so that we never lose area because of too much length.

If T is large enough, we should realize that there is nothing in our
formulation, prohibiting the point from making more that one circuit of
his circular optimal path. Area is of course reckoned with sign as in
elementary calculus.

Finally, let us study the limiting case as A — oo. It is easy to see that in
the limit (5.7.11) becomes

r=X—
=S
T=r

corresponding to starting points whose distance from ¥ is just T, so that
there is no choice of paths. These cases delineate the possible.

Exercise 5.7.1. Solve the typical classical isoperimetric problem where the
sought curve is to connect two given endpoints in the upper half-plane.
(Surround one of the endpoints, say Py, by a circle of small radius d to
obtain %, etc.)

Problem 5.7.1. Make a two-person game of the last exercise by allowing a
second player P to move P; with simple motion at a speed <1. His
objective will be to minimize the area under the curve. Its length is still
to be T, but P can be considered victorious if he can render such impossible
to the original player E.

It is hard to mine anything new from such well dug ground as these
isoperimetric problems. But the problem below is novel in that it asks for
fewer end conditions than its classic brethren. Yet it is meaningful and
fits our ideas nicely.

Problem 5.7.2. What curve (or curves) maximize the area beneath when
the only constraints are

1. The length is a given T' > 0.

2. One endpoint is given?

Research Problem 5.7.1. Show that, up to an arbitrary multiplicative
constant (perhaps 4 1), our 4 is the same as the Lagrange multiplier in the
classical treatment.

e



CHAPTER 6

Efferent or Dispersal Surfaces

The rich variety of singular surfaces which can be entailed in the
solutions to differential games is the key to the important, often pre-
dominant, phenomena which fall outside the scope of mere differentiat
equations. This chapter is the first of several which emphasize a par-
ticular type. Dispersal surfaces, although simple in principle, are often the
seat of mixed strategies and conflicting decisions by the participants.
There has been a great deal of misunderstanding about such situations,
which we endeavor to clarify in the central sections.

The first section contains a classification scheme for singular surfaces
and some general observations on their roles. Dispersal surfaces are
defined, singled out, and illustrated by examples. .

Section 6.7 is devoted to the geometric method of solving certain pursuit
games. Here too are the above difficulties—special positions which at
first appear to involve an unresolvable decision balance.

The final sections contain new examples, some presented as problems.

6.1. SINGULAR SURFACES

As has been mentioned earlier, there are frequently two aspects or stages
to the solution of a problem of differential games. One, termed the in the
small, concerns the integration of the RPE, and in the examples of
the previous chapters this procedure bulked large. The other, 'tcrmed in
the large, consists of ascertaining certain singular surfaces which gener-
ally separate regions of different behaviors of the integrals of the RPE.

A singular surface is an (n — 1)-dimensional manifold in é" on which
regular behavior of the solution, as an integral of the ME, fails.

132
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To classify singular surfaces, we can consider the optimal paths on the
two sides, for we assume, at least locally, that a surface, interior to &
separates it into two regions, locally “sides.” There are four obvious
possibilities for the path behavior on each, which are, with their notations:

The paths enter the surface. (+)

They leave it. (—)

They do neither, that is, are parallel to the surface when sufficiently
nearby. (p)

There are no paths. (0)

As each condition may hold on either side there are 16 possibilities,
which we designate by such symbols as (—, p). Further, the surface itself
may be comprised of a set of paths; we will denote this event by («). For
example, the singular surface of Figure 6.1.1b is of type (+, u, +).

This classification thus comprises 32 possibilities. Not all of them need
be realized in practice, for example, the cul-de-sac (+, +). Transition
surfaces, where a control variable abruptly changes in value, have appeared
in examples of the preceding chapter. They are of type (+, —), but so is an
ordinary surface in € if it cuts an optimal path at each of its points. (Butan
ordinary surface, if a union of paths, is 4, p).)

This classification is exhaustive geometrically, that is, in terms of the
configurations of optimal paths. As such it suffices for most of our
purposes, but full consummation would demand in some cases a finer
subdivision in terms of the local optimal strategies. For example, from
each point of a singular surface of type (—, , —) three paths emanate.
Optimal play could require x to stay on the surface (the («)) when there,
but take a branch path (the proper (—)) when slightly away. Or all three
choices are optimal. Or a mixed strategy (such is not impossible, as we
shall shortly see) is best, etc. Further a (0) may signify that no solution
exists or many do with all paths optimal.

But mere taxonomy in itself does not constitute a theoretical structure.
We have as yet discovered no unified theory based on the above classi-
fication. On the contrary, the ideas surrounding the various kinds of
singular surfaces seem extremely disparate. Much of the ensuing text will
be devoted to particular types.

Differential games appears to have an extraordinary furcate structure.
No matter to what extent the theory is seemingly mastered, new and
perplexing phenomena crop up, even in the most innocuous looking cases.
We shall drop a sample of such in the reader’s lap in Section 6.10.

As we successively master each novel quandary, some type of singular
surface usually is the key. For they delineate, as boundaries, the regions of
special phenomena or they act as the bearers of initial conditions which
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(@) ()
Figure 6.1.1

generate new families of paths. Thus it is that a theory of singular surfaces
based on their types will be recondite, perhaps nonexistent, and it is thus
that we devote so much effort to particular types.

In this chapter we shall study the type (—, —), depicted, for n = 3, in
Figure 6.1.1a. At (b) is a specimen of type (+, %, +), such as will be
studied in the next chapter, which with its tributary paths, may have the
same geometric configuration. Despite their pictorial similarity, these two
singular surfaces signify very distinct phenomena.

We shall term the (—, —) case a dispersal or efferent surface, and the
(+; 4, +) a universal or afferent surface.] As we shall soon see, the
former entails a quandary: one or both players must decide by which of
the two routes he shall leave the surface. On the other hand, a universal
surface is an assembly of especially advantageous routes to the player con-
trolling the creation of such a surface and the tributary paths generally
represent his preliminary efforts to reach this desirable highway.

6.2. DISPERSAL SURFACES
A rudimentary but typical instance occurs in a game of tag with a large
obstacle—say, circular—in the playing region. We assume the players

1 The latter choices of names are of course borrowed from the neural nomenclature.
However, the former choices are more descriptive of the roles of the surfaces and we

prefer them,
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Figure 6.2.1

have sirr.1p1e motion, with P’s speed greater than that of E. If time of
capture is the payoff, it requires no sophisticated analysis to realize that the
course of an optimally played partie will often be as sketched Figure 6.2.1.
The tangent to the circle (at ) through his initial position will be E’s best
route, while P will travel first along the tangent Pa to a, then will traverse
the arc ab until hot on E’s trail bE, remaining on this line until capture.

But suppose that the starting positions both lie on a line through the
center O of the circle with the latter between the players. The symmetry
besets each player with a quandary; each has two equally good tangents to
use as routes. The set of all such symmetric positions constitutes our
simple but typical dispersal surface.?

Another instance of a dispersal surface is in the homicidal chauffeur game.
Should E be directly and sufficiently far rearward of P, each player will
have two optimal strategies; P, for example, must choose between a
sharpest left and right turn.

6.3. THE NATURE OF DISPERSAL SURFACES

We are a§suming as part of the definition of a dispersal surface that
strgtegles exist so that either of the two optimal paths emanating from any
p01r.1t of it, may be utilized. As a consequence, it is clear that the traversal
of either of a pair of paths from the same point of the surface will lead to
the same payoff. For this payoff will be the Value of the game starting
from this point.

. Ip a one-player game, consequently, the player may choose either path
indifferently, both being optimal. But with two players, there may be a
characteristic dilemma: the choice of each player will depend on that of his
opponent. Generally one player will desire matching choices; the other
the opposite, so that at the instant they are doing something like playing

* Clearly a reduced space of three dimensions suffices: say, the distances OP and OF
and the angle POE. The set where the latter is = must contain the dispersal surface.
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Figure 6.3.1

the elementary game with the matrix
1 -1
-1 L (6.3.1)

In the game of obstacle tag, for example, P and E may choose the optimal
directions 1 or 2 of Figure 6.3.1. Here, say, £ might choose 1, guessing
that P will pick 1 and pursue by the upper route; E thus strives to match
choice numbers. On the other hand, a mismatch is to P’s advantage.

This dilemma of interdependent choices does not appear serious, for as
soon as play progresses any positive amount one can expect that x will
have moved off the dispersal surface. Thus we will resolve matters by
what we term an instantaneous mixed strategy (IMS). Let some small
positive ¢ be chosen. Let the players make their path decisions with the
optimal strategies pertaining to the matrix (6.3.1), that is, choose their
alternatives each with probability 3. They persevere in these choices until
the elapse of time &. The position being no longer on the dispersal surface,
the partie proceeds in the ordinary way, aside from a possible small
penalty accruing from a wrong guess.

The indefiniteness of the “small” ¢ is undesirable, of course, in a theor-
etical problem of mathematical analysis. But in any practical application
there will be a certain imprecision which will suggest a feasible value of &:
the amount of time, for example, required to detect and act upon the
opponent’s decision.

However, if K-strategies are adopted, there is no difficulty at all. The
first decision (at the dispersal surface) is mixed, the rest are pure.

There can be dispersal surfaces which do not require an IMS. One
player may be faced with a choice of optimal strategies when X is on the
dispersal surface, but his opponent’s may be unique. Then clearly the
former player may take his choice indifferently.?

s An instance occurs in the bomber and battery game in the Appendix. When the
nt on its normal from the battery O,

bomber approaches a straight coast from a poi
he has two symmetrical, optimal routes. But as the battery’s firing strategy is the same

for either, the bomber gains nothing by mixing.

6.4] T
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64. THE QUESTION OF
DILENM.A THE PERPETUATED

The effect of an instant i
e eff aneous mixed strategy, bein ini
an | s of m
il;;?;lox:tintprgctlce, 18 not great. But there are cases whe{ie the nleI::lcsich‘l .
mi Shga1 : r:f:fxtes apll)lears to endure throughout an appreciable interir(x)lr
o such a phenomena as a ] .
. : ‘ perpetuated dilemma. i
is perhaps best clarified by illustration and the following is ;r)'l‘;)ic:;he dea

Example 6.4.1. The wall i
. . pursuit game. Here P and E h i :
1\;\/131 rlespec.tlve speeds w and 1 with w > 1.4 The pla;‘i,; 51;n§ Ice I}Ot.lon
a:e ;rln)t :ne,t l(tis boundar){ W being the “wall” which E may io’f crce)s I\SNa
rested here only in starting positions with Eon W. C s ©
the payoff. - Capture time is
IVtV cea:lg.tgmtgake capture to mean the coincidence of P and E
o e1 i crt he taken as obvious that E will do best by always rc;main‘
fn o latte: cae wall W or we can adopt this limitation as a constrail:tg
interception of erl, e‘::zd}eljve a tproblem of some intrinsic interest—the.
. constrain .
given straight line. ed (or assumed) to motion along a
From iti in Fi
ove upjv grt()isglczin ;s in Figure 6.4.1a, the optimal partie is clear: E will
t0 intercept £ Sgy t\«\;ﬁl select the straight line path which will enable him
, say, at the point labeled C. It is wel
that with this “collision Javeled C. Itiswe l known and easy to see
course” navigation by P, the strai .
. > aight 1
t}:z}lfli;r)lrogres‘ses,_ ret,a,uns t%le same slope. (Hence the soundnefs oflf:OPE, as
§ navigation” against evaders constrained to a constant velocrilts)tza)nt

[ [
C
E
-
_J (a) J )
Figure 6.4.1

AI bltI ar y Speeds ﬂlay be used Wlthl s the gl cater s wcan be construed as tllel[ ratio.

L
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open to E of reversing his velocity without sacrificing optimality. The
fact that P, always alerted for such a reversal, is similarly always faced

with a corresponding pair of choices is our sought instance of the per- 2

petuated dilemma.

The reader can possibly conceive of other simple games sharing this
phenomenon. How should the players act? To mix strategies con-
tinuously throughout a positive interim seems theoretically absurd. But
this difficulty is hardly grounds for jettisoning our science.

In many of the cases based on reality the trouble is merely caused by the
problems being improperly set. If the terminal manifold is of smaller

dimension than n — 1 (such is true of the example due to the stipulation ]

of pointwise capture), the deficiency can be reflected as a perpetuated
dilemma. Once the proper dimension is restored, the difficulty evaporates,
The reason becomes apparent when the game is put into a suitable reduced
space. We return to our illustration.

Let us change to a proximity capture, that is, restore a % of the proper 3
dimension. We center P in the disk of radius / (Figure 6.4.2), the capture -

region. Again supposing perpendicularity at the outset, collision course

navigation will carry E to some point C and P to P, (which lies on the "}

[

Figure 6.4.2

[6.4] 7

Our dilemma occurs when PE is perpendicular to W. Then both players 3
are confronted with choices 1 and 2, ((b) of the figure) somewhat as held- 4
in obstacle tag. Supposing that play proceeds under congruous choices 4
(such as 1 and 1), then the constant bearing principle shows that PE wil| 3
remain perpendicular to W. Thus at each instant of play, the possibility is
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E
i

(b)

—

—

(a)

W —

Figure 6.4.3

segment CP such that |[CP,| =]). Observe now, that progressively the
segment PE changes its slope: it becomes less horizontal until at capture
it becomes P.C. Thus once the original perpendicularity is broken, it never
recurs.

Despite the simplicity of this game, a formal analysis is enlightening.
We shall require it in any case to illustrate the ideas of the next section.

It is clear that we can employ a reduced space with two coordinates z,
y, as in Figure 6.4.3a.

The KE are obviously

= —wcos¢

Yy=y—wsing
with w>1
and -1<yp<1

so that the ME, is

ngn max [—w(V,cos ¢ + V, sin ) + V,p] = —1.
14

Thus if p =+ V,2+ V2 then cos ¢ = V,[p, sin § = V,[p, while
9 = o == sgn V, and the ME, becomes

—wp + oV, =—1
The RPE follow:

F=wi, 7o=0
P
o | Z
y=—o'+w—", IS;,=0.
P

.
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Taking s(—=/2 < s < 7[2) as in (b) of the figure, % is described ;
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x = Il cos

y=Isins
so that V,=0=K—V,sins + ¥V, cos s) -
Hence

= Acoss, V,=Asins.

As the Value gradient vector (V,, V) is to point into the space, Clear
1> 0. We do not require its specific value. Finally,
o = sgn V, = sgnsins = sgn s.

Figure 6.5.1

As Ic},- = 0, the V; retain their values above and we are to integraf
4 Asls| <

pecomes

, the first equation implies s, = —s, = s so that the second

Ny

o
r = WCOS S

¥y =wsins — ¢ y=(+wr)sins — 7= —[(/ + wr)sins — 7]

which, with the initial conditions yield I L
' jl,mplymg that y = 0. Thus the 2-axis (with # > /) is a dispersal surface and

the only such. The complete path map is sketched in Figure 6.5.2
Recall that in our first version of this game, where capture meant tht;
‘eoincidence of P and E, we were beset by a perpetuated dilemma. To see
‘how such arose, in Figure 6.5.2, let /, the radius of the capture region
become zero. From the figure it is clear that all paths such that ’

x = (]l + wr)coss

y = (I + wr)sins — or, (lsl < g ,7> 0,0 =sgn s) (6.43

which describe the optimal paths. We shall return to these equations';

the next section. L

[sin s| < w1

6.5. THE CONSTRUCTION OF DISPERSAL
SURFACES

Let us suppose we are at the stage of the solution process where we hav§
just integrated the RPE from some set of initial conditions as might :L
borne, say, by . Suppose we find that the paths obtained fall into twolle
classes which intersect (members of one class meet those of the other,
of their own) such as is suggested by Figure 6.5.1. We find the locus olge
which two paths, one from each class, meet and such that the Value at th
meeting point is the same for both. This locus is the sought disperss
surface. Only the segments of the paths extending from the seat of th
initial conditions to the dispersal surface are retained. ,

We illustrate with the preceding example. Returning to the equatior
(6.4.1), we see that the paths can be divided into two classes according ¢
s 2 0. We seek the points where two paths, one from each class, meet witlt
the same Value which here is 7. That is for any fixed = > 0 we must havg

will then coincide with the dispersal surface and it becomes the renegade
path.
y

sin=1 (T},-)’ ®

B
(AB is paraliel to DS)
x=( + wr)cossy = (I + wr)cos s,
y=(+wr)sins, —7=(+ wr)sins; + 7
where 51> 0> 5

Figure 6.5.2



142 DISPERSAL SURFACES [6.6)

6.6. FURTHER EXAMPLES

In this and some later sections are further cases where the perpetuated
dilemma is dispelled by use of an orthodox €, but the means are dis-
similar. Simple as is the example below, it does typify a situation which
might well be embodied in more significant games.

Example 6.6.1. The one chance pursuit game (M. Dresher). Because this
is a game of kind we will, to a slight degree, have to anticipate the techniques
of Chapter 8.

Figure 6.6.1a shows the vectograms of P and E which are the same for
all positions.® The desideratum of P is to attain capture (in the point
coincidence sense); E to avoid it. It is clear that once P and E pass one
another, the chance for capture is irrevocably lost.

It is when the line EP has a slope of 45° that the perpetuated dilemma
occurs. ThenP must continually outguess E in order to attain capture,
and inversely for E to escape.

Taking z and y as the relative coordinates of P with respect to E, we
can use them as reduced coordinates, as shown at (b). The vectograms
for both players are identical. Capture consists of bringing x to the

(a)
y x
/
/
x
(b)
Figure 6.6.1

5 We are taking the vectograms to be the same size, but only a slight modification is
necessary if they are different but similar.
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Figure 6.6.2

origin. The dotted line is one of perpetuated dilemma, for if E moves
vertically, P must do so horizontally to stay on it and vice versa.

Let us see to what degree the contretemps is dispelled by employ-
ing a capture region of positive size. In Figure 6.6.2 it is taken as a
disk.

Fromrany point of the shaded region, between the lines B, and B,, P can
achieve capture. These lines are what we will later call barriers, and the
reader will have a better understanding of their role in games of kind after
having read Chapter 8. Here it suffices to note that if x is in the shaded
region, P can keep it there by playing vertically when x is sufficiently close
to B, and horizontally should x approach too close to B,. This policy can
easily be embodied into a definite strategy by assigning definite bounds to
the closeness.

Entirely anglagous remarks apply to E’s behavior when x is outside the
shaded region. He can prevent P from forcing the entry of x and so can
achieve escape.

Thus the outcome of the game is precisely determined at all points save
those on B; and B, themselves. But on these lines the strategy of each
player is uniquely determined under penalty of definitely losing the game.
On By, say, P must play his vertical velocity and E his horizontal, each having
to act so as to keep x from shifting to the region unfavorable to him.
Thus, once on B, the point x will traverse it. The result is that it will
touch the capture disk without entering it.

Of course, we are at liberty to define such an outcome as either capture
or escape. In Chapter 8 we shall give grounds for calling it neither, but
terming it neutral.

But at all events, the perpetuated dilemma has been dispelled; un-
ambiguous strategies can be defined for all &.

wr .
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Before proceeding with further examples, it is well to digress on

6.7. THE GEOMETRIC METHOD FOR SIMPLE
PURSUIT GAMES OF KIND

The simple problem of the interceptor and bomber given in the first3
chapter (Example 1.9.2) is an illustration of the ideas to be somewhat
expanded here. We deal with pursuit games}
and, for simplicity, ones with simple motion
the plane.

Let the set of points which E can reach]
without being captured, despite P’s b
efforts, be called the safe region and let the
surface which bounds this region be desig:
nated by the BSR (boundary of safe region),

In many instances of pursuit games it is clear that under optimal play
capture will occur on the point U of the BSR yielding the highest payoff
to E.* The optimal strategies will be such that both players will travel to
U in minimal time and capture will occur there.

These concepts have all been illustrated in Example 1.9.2 where the
BSR is the perpendicular bisector of PE.

We wish to note here a few particulars about various types of BSR,
If the ratio of E’s speed to that of P is w, and capture is defined as co-
incidence of P and E, the BSR will be the set of points U, where

|EU| = w{PU]|. (6.7.1)
For w s 1, this set is the well-known Appolonius circle (Figure 6.7.1),

If w < 1, E is interior to the circle and P exterior. Remark the readily
proved fact:
If P and E both travel straight toward a point U on the Appolonius

circle, then any new such circle, obtained from a pair of simultaneous
intermediate positions of P and E, is tangent to the original circle at U. ¢ §

e

Figure 6.7.1

BSR becomes the oval
|EU| = w[|PU}| — 1].

geometric properties, easily proved, are worth noting.

o But not in all. If Example 1.9.2 is modified only by assigning a lower speed to P,
then E can always reach the target.
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Figure 6.7.2

The hyperbola passes through the midpoint of E and the nearest point of
% 1o E. The asymptotes pass through the midpoint of P and E and are
perpendicular to the tangents from E to €. Furthermore, P and E are
the foci (Figure 6.7.2). 6.7.9)

Problem 6.7.1. Prove the assertion of the footnote: If P and E both have
simple motion, but E is faster, P cannot forestall by prior capture E’s
reaching a given target. Capture means [PE| < /.

68. FURTHER EXAMPLES: THE FOOTBALL PLAYERS
AND THE COOPERATIVE CUTTERS

Example 6.8.1. The football players. The vertical lines of Figure 6.8.1
are the sidelines of a football field. The ball carrier E desires to move as
far upward—toward his goal—as possible. He is opposed by the single
tackler P. Both players have simple motion with the same speed. Capture
is positional coincidence.

The problem can be handled in the manner of Example 1.9.2: We draw
the perpendicular bisector, the BSR, of PE and seek its uppermost point
U in bounds. Both players run toward U, which generally lies on a
sideline.

Our dilemma occurs when the segment PE is vertical. The bisector now
parallels the goal lines, and all its points are equally meritorious as

,dest‘inations. There are not merely two but a continuum of equally good
~ choices confronting both players.

One is tempted to offer the solution: P should always remain at the
mirror image E about the bisector. But this policy is not a strategy, for P
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P ()
L

Figure 6.8.1 Figure 6.8.2

would have to base his directional decision of E’s velocity, a control .
variable.” We have discussed earlier our motives for rejecting such pro-

cedures.

As before, we alter capture to the entry of E into a disk of radius /

centered at P. As stated in the last section, the bisector is replaced by the

arc and hyperbola. When PE is vertical, the quandary evaporates; Eand P 1]

should each run directly forward (Figure 6.8.2).

Note the degree of resolution here. We have passed from a situation of .

infinitely many choices to one with no ambiguity at all! Even an in-
stantaneous mixed strategy is not required.

If E finds himself underneath P, within the vertical projection of the
capture circle, the geometric analysis would indicate that the sidelines
would generally play no part in the solution. For the result (6.7.4) shows
that in this case, the two asymptotes would slope downward as they
progress from the midpoint of PE out toward the sideline. If the side-
lines are at an appreciable distance from P and E, the hyperbola
branch will also slope thus, and its highpoint must be well within the
ball field.

The formal analysis below will confirm this statement. It leads to a very
simple solution free of any reference to algebraic curves such as are the
BSR. We dispense with the sidelines and, on the grounds of this slight
increase in generality, assign a new title.

" However legitimate strategies exist which give arbitrarily close approximations.
If P starts from a position near but not at the mirror image, he can adopt the strategy
of always traveling toward it.
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Exgmp.le 6.'8.2. The simple blocking game. The state and control variables
are as in Figure 6.8.3 so that the KE are (the speeds being unity)

1= —cos ¢

Yo =cosy

% = —sin¢ — siny.
We have a terminal payoff with H = y,.

The ME, is
m¢in max [—(V; cos ¢ + Vysin ¢) + (V; cos p — Vsin y)] = 0
14
SO that if P1 =V Vlz + Vaz, Py = \/sz + V32

V; . Vv, -
COS$=—1, s|n$=_s; COS’l,l-)=‘Y'2‘, sini::-j’.

P P ] P2
Thus the ME, is

We have for €

Y =58y «=1Isins;, y, =5+ Icoss,
(s, is angle of PE and the vertical) Ason &, ¥V = s,
Vo=H, =0=IVscoss;, — V;sins,)
V,=1=V,+ ¥,

—P1+ pp=0.

Thus .

Vi=Acoss, Vy=2sins, V,=1— Acoss,.

If 5, = 0, so that capture has occurred with E at the lowermost point of €,
then V; = oV[dy, > 0 as we can see that increasing y, (with y, and =
fixed) increases V. Thus 2 > 0. The ME, gives

pr=A=py=+(1 — Acoss)? + A2 sin s,2

A=—1
2cos s,

from which

.At this point we can note the optimal strategies and adduce a complete
picture of a partie without integrating.

cos ¢ =t =""""1 = cos s,
P1 A
sin § = sin s,
_ 1 —1Acoss
coszp:—————-}v ! =coss,

sin = —sin s,
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so that
‘5 =8 =—9p

and the optimal paths must appear as in Figure 6.8.4. As the equal speeds
imply |P,U| = |EU|, and as the two angles s, are equal, it follows that EP,
is vertical. The simple construction for the optimal strategies follows:

From E draw a vertical line meeting % at P, (the lowermost intersection),
Draw PP, and extend it to U, where it meets the perpendicular bisector of
EP,. Both players head toward U.

Should E lie without the vertical projection of %, the second remark of
(6.7.4) about the slope of the hyperbola’s asymptotes shows that by
steering for a sufficiently remote point on this curve he can attain as large a
payoff as he pleases. Thus no solution then exists.

It is easy to see that this solution jibes with the geometric one. First U
lies on the hyperbola from the definition of the latter as a locus. That the
tangent is horizontal at U follows from the well-known property of a
hyperbolic mirror’s reflecting a light ray emanating from one focus as if it
came from the other focus.

Exercise 6.8.1. Find the Value of the football problem when it is a
composite of Examples 6.8.1 and 6.8.2. That is, the field has sidelines
and there is a positive capture radius. As before, both P and E have simple
motion with the same speed. The sought Value is the gain (of distance
toward his goal) that E can make with both players acting optimally.

Example 6.8.3. The two cutters and the fugitive ship. There are two
pursuers (the cutters) P, and P, chasing a fugitive E. All move with simple
motion, the speeds of the cutters each being greater than that of E.

Time of capture is the payoff and coincidence of either P, or P, with
E capture.
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U

Py
Figure 6.8.5

The geometric solution proceeds as follows: Draw the two Appolonius
circles (re Py and E, P, and E). The intersection of their disks (shaded in
Figure 6.8.5) being the region in which E is safe from both pursuers, he
heads for its most distant point U and so do P, and P,.

Cieba® has given a rigorous proof, along lines quite different from ours,
that this solution is correct.

The perpetuated dilemma occurs when P, EP, lie on a straight line in that
order. Then there are two points U both equidistant from E. Toward
which should all three craft head? If they all pick the same one, they con-
tinue during play to remain collinear and, by the remark (6.7.2), the points
U are unchanged. We have optimal play but with a perpetuated dilemma.

Cieba’s resolution is to have the pursuers take E’s velocity as well as
position into account and is analogous to the mirror image policy of the
tackler in last example and open to the same objections.

But again we equip each pursuer with a positive capture radius. It is
now clear that once the chase is under way, the three points lose their
collinearity and the dilemma reduces to an IMS.

Cieba points out that the symmetric case, with equally fast pursuers,
with E midway between them, is equivalent to the wail pursuit game
(Example 6.4.1). For if in this game we place a second pursuer, as a
mirror image to the first, about the wall, the latter constraint may be
removed, symmetry compelling E to follow his old course. Thus in this
case of the two cutter game, at least, we have already done a full analysis.

6.9. THE EXISTENCE OF THE PERPETUATED
DILEMMA

Can such existence occur in a legitimately formulated game? The
answer is affirmative, as shown by

Example 6.9.1. A game with perpetuated dilemma. For & we take the
half-plane above the 2-axis which shall be . The payoff is to be terminal

® We have read the ms. of his paper on pursuit games but do not know if and where it
was published.
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with H(x) differentiable and even; it has a maximum when z = 0 and
decreases as * — 4 . The KE are

d=¢(+2Vleh+v, —1=Z¢y=1
y=—1

Thus x has a fixed downward velocity and must meet €; Edesiresittodo
so as near z = 0 as he can; P, as far. The ME, is

(1 + i)V, + 9V, — ¥, = 0
where § = —sgn V,, § = sgn V, and the RPE are simply

g=—dl+22) =5 Vo= =Vl
y=1 P, =0.

At ¥
z=s, y=0, V=H(@)

and symmetry enables us to work with s > 0 only.
Then on €
Vo=V, =H(s) <0

andso ¢ = 1, % = —1. From the relevant RPE it is clear that ¥, will not
change sign and so these strategies persist. Integrating the system

2 = —2/z, 1

¥ =
y=+s — V.

yields the paths

[69] THE EXISTENCE OF THE PERPETUATED DILEMMA 151

We complete the picture symmetrically in Figure 6.9.1. Clearly the
upper y-axis is a dispersal surface. On it both players have the choice of
any horizontal velocity of modulus 1. The maximizing player E will
want X to remain on the DS and so will try to choose a velocity opposite to
P’s selection. On the other hand, P strives for concordant choices. Thus
as long as E succeeds in keeping x on the DS, there is a perpetuated dilemma.

Even here we do not feel a serious conceptual hindrance. For suppose
we quantize the game so that the players act in a discrete sequence of small,
closely spaced moves, each a miniscule game with mixed optimal strategies;
E loses once x moves off the DS, never to return. And the probability
of each such loss is 3. Therefore it is extremely improbable that x stays on
the DS for very long. If the continuous case is regarded as the limit of
finer quantizations, it appears as valid to accept immediate removal.
Certainly we may do so in practical problems.

Problem 6.9.1. Show if the only change in the last example is to replace the
first KE by
g=¢(l+ %) +y

the paths are as in Figure 6.9.2. Thus it is possible to have a path of
perpetuated dilemma that is not a dispersal surface.

In Figure 6.9.2 there are no solutions outside the curves A. From such
starting points P can obtain an arbitrarily small payoff. Thus the A4 are
singular surfaces of type (0, u, p).

It is easy to see that the paths near any path K of perpetuated dilemma
must have the same direction as K. That is, if K is a DS the branch paths
must meet in tangentially. This fact could have been used in our earlier
examples to preclude the perpetuated dilemma directly, for there the paths
were straight lines.

y

A

Figure 6.9.2

.
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Figure 6.10.1

6.10. VARIOUS PROBLEMS

‘We mentioned earlier unsuspected intransigencies of differential games,

As a case in point, we return to obstacle tag. This pursuit game was coined

merely to introduce the subject of dispersal surfaces with as simple and
obvious an example as possible. For such starting positions as sketched in
our earlier figures, the solution is manifest enough not to require analysis,
Yet for others the game is not so innocuous.

Suppose E starts from very near the obstacle and P reasonably far away,
as shown by E and P in Figure 6.10.1. If the players now act according to
our former “obvious” optimal strategies, they will soon be at positions
such as E;, P;. Here the obstacle no longer intervenes! The “obvious”
solution is obviously incorrect, for the broken line is clearly a better path,
None of the ideas in this book appears adequate to solve this game.

Research Problem 6.10.1. What is the full solution to the game of obstacle
tag?

The problem below entails a dispersal surface determined from means
other than mere symmetry.

Problem 6.10.1. In the game with KE:
B = (¢ — apu@)
g = —u®), -1<4y<1
where 0 < @ < 1and u(z) is positive, has a minimum at x = 0, is otherwise
monotonic, is infinite at z = 400 andfw 1/u(x) dx exists.

Here £isy >0and € is x =5 (00 < s < ), ¥y = 0. The payoff is
integral with G = 1.

Prove: 1. There exists exactly one dispersal surface.
2. It meets the z-axis at 0, lies within the sector

2] < (1 — a)y
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and is asymptotic to the line x = k, where k satisfies

f" dz _[*d=
—wu(®)  Jr u@)’

3. In the symmetric case where #(z) = u(—z) the above surface
will be 2 = 0, ¥ > 0, and on it ¥, is not zero and discontinuous.

The following problem is difficult. As a military problem its ultility
appears slight because of the miniscule advantages of the payoff, but it has
some novel features, the understanding of which would advance the present
theory.

On the other hand, a game of kind version of this situation would be of
immense practical importance if it is reasonably possible for the aircraft
to dodge the missile by veering as described below. There would, of
course, have to be some limitation on the missile’s turning capability,
but he should navigate as best he can to anticipate the veering of his

target.

Research Problem 6.10.2. There are certain types of antiaircraft missiles
which, due to physics of the means employed, can sense the proximity of
their target much better from its rear than from its front. For example, in
Figure 6.10.2a we will take the oval drawn about the airplane E as de-
limiting the region in which the missile P can detect his quarry. In terms
of our theory, then, the oval will correspond to the capture surface and we
will denote its boundary by €.

Let the airplane desire to advance as far as possible before capture, that is,
P’s entry in ¥. In the position sketched, it seems plausible that E can
achieve a gain by veering to the right when capture is imminent and so
swinging % away from P. Should € be shaped as at (b), it appears that a
similar gain would be witnessed by E’s veering left.

Besides the usual aspects of a problem in differential games, this situation
generates some unusual questions.

Which way should the aircraft veer? [We have answered this: The
veering is left or right (with P on the right as in the figure) depending on
whether dD/ds > or < 0 at the point where P will meet €. Here D is the
distance from E'to a point of % and s the arc length of € measured from the
centerline. [Compare (a) and (b) of the figure).]

It seems plausible that when P is far away, E flies straight. Just when
does he commence to turn?

The dispersal surface would be among the set of symmetric positions
with P directly behind E’s tail. Is an IMS involved in one part of the DS
(P and E close) and not on another (P and E remote)?
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(a) (b)
Figure 6.10.2

Example 6.10.1. Sandpiles. If as much sand as possible is heaped upon a
flat horizontal plate of arbitrary shape, the upper surface of the sandpile
will have almost everywhere the same gradient, which is a characteristic
constant of the sand. For example, a circular plate supports a cone and an
oblong one, a hip roof. The crests formed by the five roof peaks are
fairly obvious, but more irregular plates can yield some surprising con-
figurations.

Formally, if u(z, y) is the height of the pile, it must satisfy,8 except at
crests, ul+ut=1 (6.10.1)

and u = 0 at the plate boundary, a closed curve €.

Now consider the one-player, differential game: the point x, initially
within €, moves with simple motion and unit speed and it is to reach %
in minimal time. We assert:

The plot of V for the game is the upper surface of the sandpile and the
crests of the latter (in planform) are the dispersal curves of the game.

For once again the KFE are
t=cos¢, p=sing
and a simple analysis yields
cosg=—V,lp, sing=—VJp, p=VVE+tP?

8 We have normalized the above sand constant to 1.

(6.10.2)
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and the ME, is easily seen to be
—pt+1=0

so that V satisfies (6.10.1). Also ¥ = 0 on %.

Fo construct the solution, note that the RPE contain Iofz = IO’,, =0,
which, with (6.10.2) imply that the optimal paths are straight. Denoting
a smooth portion of € by x = X(s), y = Y(s), our initial condition
equation (on )

Vo=0=XV,+ Y'V,

implies that the paths meet % at right angles. As distance and time (=)
agree on the paths (as speed = 1), we apply the construction of Section
6.5 to obtain the DS, utilizing simply distance along the interior normals
to € as V. As Vis the height of the plot, the latter is a continuous surface
which must agree with the top of the sandpile.

Problem 6.10.2. Study the geometry of these dispersal curves. For
example, with polygonal €, they are comprised of pieces of straight lines
and parabolas. If a smooth € has a “vertex” (a point of locally minimal
radius of curvature) the DS terminates at the center of the osculating
circle there.

L3



CHAPTER 7

Afferent or Universal Surfaces

7.1. INTRODUCTION

As stated in-the last chapter the singular surfaces of the title are of
type (+, 4, +), and the typical one in three dimensions has been depicted
in Figure 6.1.1b.

To envisage the role of universal surfaces, abbreviated US, in differential
games, one can think of such a surface as a union of especially advantageous
paths. Optimal play will demand that the descriptive point x be brought
to the US and thereafter remain on it.

We are dealing with games, in which the essence is that the interests of
the players are conflicting. Therefore the word ‘“‘advantageous” above, if
applicable to one player, can be expected to be the contrary to his opponent.
Thus, often the decision to utilize a certain surface as a US rests, under
optimal play, with one player alone. It even may be that his opponent’s
optimal strategy is perfectly continuous on the universal surface and
nearby.

Consequently, much of our investigation will treat of one-player games.
Little generality is lost thereby, for we can think of the opponent as
operating under the aegis of his optimal strategy that has already been set.
Later we shall ascertain this setting and so restore the competitive aspect.

Accordingly we single out for definition: A ¢-universal surface (or ¢-US)
is one which is created by a discontinuity in ¢, while ¢ is continuous on the
surface. An y-universal surface (yp-US) is defined similarly (¢ and o
interchanged).

What appears to be the most interesting type of US occurs when the
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kinematic equations are linear at least in some of the control vari-
ables (and G also in case the payoff is integral). Let ¢, be such a
variable.

Then the idea of limiting ourselves to one-player games can be pushed
further; we may deal with games with only one control variable. The
idea is, as before, that we assume all other than ¢, replaced by the §,(z),
#,(x) which are constituents of optimal strategies. In the resulting one
control variable game, the main equation will be linear in ¢, as all the KE
(and G) are. Let 4 be the coefficient of ¢, therein. Then generally, under
optimal play, ¢, will assume one or the other of its extreme values allowed
by the constraints according as the sign of A. The only possibility of ¢,’s
assuming an intermediate value occurs at points where 4 = 0.

Let us suppose there to be a surface & such that 4 = 0 on & but no-
where else in some neighborhood of &. Such loci alone can be universal
surfaces. However, they need not be. If 4 does not change sign across
&, we should not expect & to be singular at all. If it does, & may be a
transition or dispersion surface. The former we have seen actually to
occur in some of our examples; on the latter, on the other hand, the ¥
themselves may be discontinuous and 4 need not exist at all.

Unlike most other types of singular surfaces which we treat in this book,
the US involve no retrograde paths leading fo them. Therefore their
detection cannot follow from the integration of the RPE, and their possible
locations are largely independent of € and the initial conditions.

We do not give a full theory. Indeed the subject of linear vectogram US
appears big, possibly as big, as our later discussion will indicate, as the
major chapters of the calculus of variations. We will give an analytic
necessary condition for the cases up to four dimensions. It suffices for
many problems, but there appear to be many other interesting facets which
we leave unexplored.

Not all universal surfaces require linear vectograms. We take up another
type first in the section immediately following because of its historical
contiguity with the calculus of variations. They appear to be of secondary
interest, and the reader may skip the next section with no loss of future
comprehension.

7.2. UNIVERSAL SURFACES WITH
NULL INTEGRAND

Supposing, in a game with integral payoff, the integrand G depends on
the z; only, is 0 on a certain surface % but is otherwise positive. Then &
constitutes a locus of free rides for the minimizing player P, in that, once

* See Examples 7.3.1 and 7.5.1, where A = uV, £ 0 near the dispersal surface.
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on &, travel of x incurs no penalty for him as an increased payoff. Thus,
clearly, there will exist cases where & will be a ¢-US.
The analyses of one-player (P) games in such cases is quite straight-

forward.
Clearly V will be constant on . If & meets %, this constant will be

zero. If not, we apply our usual methods, calculating ¥(x), beginning at
€ and working away from it until & is encountered. The lowest value of
¥ thus found on & will be the constant. From the point (s) U where this
minimum occurred, the optimal path(s) will leave 7.

Then, using & as a seat of initial conditions, we find, by the usual
integration of the RPE, the paths leading into &.

Under optimal play, x will traverse one of these paths to &, then, by
any admissable route whatever, proceed to U, and thence utilize an already
found optimal path to %.

The only possible novelty here lies in our point of view; the substance
is very old. We illustrate by treating a famous stock problem of the cal-
culus of variations from the universal surface standpoint.

Example 7.2.1. Surface of revolution of least area. Given two points in
the plane both above the z-axis, to find the curve joining them which,
when rotated about the »-axis, generates the surface of minimal area.

The solution is classic fare. When the points are sufficiently near one
another and far from OX, the curve is a catenary. Under sufficient
negation of these conditions, the curve becomes the union of three
segments: two extending vertically from the points to OX and the
segment of OX joining their feet: the well-known “Goldschmidt dis-
continuous solution.”

We relook at matters.

In our one-player game, x moves with simple motion at unit speed.
Thus we take as KE

% = cos ¢

¥ = sin ¢,
Since the elementary formula for area of revolution generated by an
arbitrary curve is 2= f|y| ds, we take
G=lyl
so that our payoff will be proportional to the desired area. We use |y|,
not y, so that we can use as & the entire z, y-plane.

The ME, is
—p+lyl=0
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and the RPE are

o v,

x=f, V, =0

o VI/ 0o
?/=;, V, =sgny

where p= N VE+ V2,
and also cos$=—§, sin$=—Y—,
P

The choice of end conditions is at our disposal. The familiar version
with fixed endpoints we relegate to an exercise. Our curves will extend
from some point on the y-axis to a given right endpoint. Thus, in ac-
cordance with the present theory, we take

(”@:x>03 —00<y<oo
%: x=0, Yy =3s.

First, our standard construction of optimal paths emanating from %
will yield the classical catenaries. We shall find them in the upper half-
plane only and so take y > 0, s > 0.

As on %, V=0, we have V, = 0 = V,, and we complete the initial
conditions, using the ME, (clearly ¥, > 0 from the nature of the problem):

Ve=ls| =3, V,=0.
The integration of the RPE is straightforward, yielding
Ve=1s, V,=71
and
+7 z, 3
x=slog(-P—), y=p, p=+/st+ (7.2.1)

N

the sought paths. Elimination of 7 leads to the equation of a catenary,
y = scosh (z[s). Of course, the original phrasing of the problem requires
that s be selected so that the path (7.2.1) passes through the prescribed
starting point.

We will need below

T 1 + T
V=fpdt=—[ T+ s lo f——].

, S|P g s (7.22)
Now for our major interest, the ¢-US. The curve & on which G = 0is

x=/,¢, y=0

.
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Figure 7.2.1

where u, a parameter, 2> 0. The ME, shows that on &
Vo=V, =0.
(As & meets €, on the former, ¥ = 0.) Integrating the RPE with these
initial conditions gives us, for paths emanating from &:
Vo=0, V=01, p=r7
x=py, y=or
Here 0 = sgn y and clearly we use both ¢ = 1and —1. These “tributaries”
to & are clearly vertical lines. We compute directly that on them
V=32 = 4yt (7.2.3)
The two sets of paths join on a dispersal surface which is obtained by
equating the two values of ¥, (7.2.2) and (7.2.3); in the upper half-plane
p+ T}
s

3y’ = %[pf + s*log
If from this equation and the pair (7.2.1) we eliminate s and 7, we reach
the equation of the upper dispersal surface, which turns out to be
z = cy.
Here c is a constant satisfying
cexp¥(1+c®=1, (c=.53...).
The optimal paths are sketched in Figure 7.2.1.
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Exercise 7.2.1. The classical problem with two fixed endpoints. Let
QO = (a, b) and we use for ¢

z=qag+4+ dbcoss

7 y=b>b+ dsins
so that
(—V,sins + ¥, coss) = 0.

Proceeding in our customary manner and taking the limit as 6 — 0, we
have on ¥
Veo=0bcoss

V,=bsins.
Complete the solution using these initial conditions.

Research Problem 7.2.1. The two-handed version. Let Q above move
with simple motion, but with speed <1, under the control of E, so that
the problem becomes a pursuit game. Under certain circumstances,
clearly £ can control which type of path (catenary or 3-piece polygonal
line) P will follow. Does the optimal solution reflect this control’s being
a major factor in E’s strategy?

7.3. UNIVERSAL SURFACES WITH LINEAR
VECTOGRAMS: AN INTUITIVE PURVIEW

To illumine our general ideas we consider one-player, two-dimensional
games. Such must necessarily have integral payofis if there is to be a
universal surface. For, if the payoff were terminal, we know that the
Value is constant on each optimal path. Then it is constant on the US
and must retain the same value on all tributary paths; thus it is constant
in a region containing the US. Accordingly in this region all strategies
are optimal, and the US exists only in the most trivial sense.

Having settled on an integral payoff, we shall assume, in virtue of the
last section, that G 5% 0. Let us take for definiteness G always positive.
It will simplify matters if G is independent of the single control variable,
¢, but we shall soon see that the following ideas hold when G is linear in é.

Suppose in a region of &, the gradient of ¥ exists and is not zero.
(Note that this is not true near a US of the null G type.) Then we will show,
in a rough geometrical way, that a US can arise only if the vectograms are
linear.

Let Figure 7.3.1a depict a typical linear vectogram. Imagine it drawn
to a very small scale so that its vectors closely approximate the actual
possible displacements of x during a very short interim. Superposed on the

.
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(a) (b

@

A

Figure 7.3.1

same figure are some of the curves on which ¥ is constant; V is supposed
to increase in direction of the arrow labeled V.

Which vector of this vectogram is best? Obviously the one achieving
the greatest decrease in ¥ or the one penetrating farthest through the pencil
of curves. In this case it is the (over-scored) leftmost vector.

In (b) we have a similar situation, but now the greatest decrease of V'
accrues to the rightmost vector.

It is clear that the criterion is the direction in which ¥ increases along
the headline (the line of the arrowheads). Thus an intermediate vector
can attain maximal penetration only when this increase is zero or when
the headline is tangent to the local curve of constant ¥. Such a case is
depicted at (c).

Suppose there is a curve on which such occurs at each point. For
example, the dashed curves of Figure 7.3.2, where it is supposed that all
vectograms have horizontal headlines. Such curves alone are eligible to be
universal. Let us now return to Figure 7.3.1c and suppose that the point
depicted lies on such a curve. From our study of (a) and (b) of this figure,
we see how the vectograms immediately to the right and left will behave:
the small vectograms drawn at (c) have their optimal vectors overscored.
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Thus the optimal paths from both sides will converge to the center and we
will have a US.2

To justify our assertion that linear vectograms are essential, observe a
typical properly convex vectogram such
as appears in Figure 7.3.1d. Again the
criterion of matching the slopes of

AN
headline and V-curve holds; in the s
figure the overscored vector yields max- 2’*\\
imal penetration. Thus, generally, the /—k\
minimizing - ¢ is an interior one and e f"i > /‘1,
varies continuously with x so that no |
US can appear. If the vectogram is but
slightly convex, we may expect that the A
optimal paths will resemble those of the
linear case, probably in some manner SZZ \V
such as that suggested by Figure 7.3.3. /

George Dantzig has suggested ex-
ploiting this idea to compute a US. /
Render a linear vectogram slightly con-
vex, ascertain the paths, and then study
their limiting behavior as we allow the Figure 7.3.2

‘convexity to disappear.

Let us seek some heuristic insight as to what may happen when more
control variables are present or at least considered active. Figure 7.3.4
depicts a three-dimensional analogue of the subject of Figure 7.3.1. The

AN

T

Figure 7.3.3

# Should the V-curves curl upwards, however, the little vectograms would have to be
interchanged and we would have a dispersal surface. But generally at such the ¥; are
discontinuous and the ¥ curves suffer a saltus in their slopes. We invite the reader to
attempt the construction of an example in which there are smooth V-curves at a
dispersal surface.

L
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Figure 7.3.4

vectograms are cones and linear in the sense that their bases are flat (the
headplanes). Also drawn are some surfaces of constant V. The same
argument as before shows that an afferent behavior may possibly occur on
the curve on which the headplane of the local vectogram is tangent to the
V-surface. Then we have a “universal curve” rather than a surface.

It seems plausible that this is an instance of a general truth: vectograms
linear in several control variables can lead to universal manifolds of lower
dimension. It is interesting to think of the possibility of such a manifold’s
consisting of the intersection of a number of US each relating to a distinct
control variables. We have not explored the ample terrain which appears

to spread before us here.
An example may elucidate our feel for the subject a bit further.

Example 7.3.1. Let us consider motion in the upper half-plane with P
endeavoring to have x reach the z-axis in minimal time. All the vecto-
grams are to be shaped as in Figure 7.3.5a, but their size is a given smooth
function u of x and y. That is, the KE will be

& = du(, y)
j = —u(z, y), -1<¢<1, u>0.
Let us think of the surface which is the graph of u as being roughly

indicated in the figure, where the curves are meant to be sections perpen-
dicular to the page. That is, U; and U, are crests of ridges while D lies at

the bottom of a valley.
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Clearly the optimal paths, when nonsingular, will have slopes of +45°
As Uj and U are loci of large u, we may expect them to act as high spee(i
arteries and be universal. Similarly, D, a curve of low speed, might be
suspected of repelling x and being a dispersal surface, ’

The first conjecture is correct as will appear later (Example 7.5.1). That
the second is generally false® can be gleaned from Problem 6.10.1 (with
a = 0). Of course, if U, and U, are both US, a dispersal surface must lie
soﬁlewhere between them .but not necessarily at the bottom of the
valley.

Observe how x, if starting from such a point as X;, might first go to U,
traverse it downward to its end, then follow a —45° path to U, anti
traverse it to X,. ’

Because U, and D terminate, there must be changes of sign of u, on the
left part of the plane. These lead us to suspect a transition surface there
on the grounds that P might gain by successive diversions of x towarci
regions of higher «.

A later result will show that the universal surfaces are marked by the
condition

U, =0 (7.3.1)

but no such general criterion can distinguish dispersal or transition
surfaces, for they depend on the % and the initial conditions.

“le
X

U D

/

Uz

X
Figure 7.3.5

f’ It is obviously true sometimes, for example, if D is vertical and an axis of symmetry
of u.
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7.4. THE ANALYTIC NECESSARY CONDITION FOR A
LINEAR VECTOGRAM TYPE UNIVERSAL SURFACE

We deal with a one-control variable (and hence a one-player) game. It
may and will be assumed to have terminal payoff, as shown in Theorem
2.4.1. At the outset of the preceding section we learned that we must have
n (the dimension number) > 3, if a US is to occur.

The KE will be of the form

& = “i¢ + B
with o, and B, given functions, assumed smooth as need be, of the z;. The
vectors « and f are supposed lineally independent. We may always take
for the constraints _1<é<1 (7.4.2)

by choosing for § the vector extending to the center of the headline and «

the vector reaching from there to one of the ends of the headline.*
Suppose we have some definite game, with Value function ¥ (x), which

contains a US on which V is supposed smooth and the ME holds. We will

have (7.4.3)

i=1,...n (1.4.1)

$=0=—sgnd

where A= 2“; v,
i

whenever 4 # 0. Similarly, we denote X,8,V; by B. As the universal
surface must be traversed by an intermediate ¢, say ¢ with —1 < ¢ < 1,

on it we must have A=0. (7.4.4)
Since the ME is A¢ + B = 0, on the US we must also have
B =0, (7.4.5)

Now the tributary paths to the US are obtained by integrating the RPE,
utilizing the US and the values of ¥ on it as initial conditions. As there
are to be distinct sets of these paths from the two sides of the US, it can
only be that ¢ = +1 for one side and —1 for the other. From (7.4.3)

then, 4 is of opposite sign on the two sides.
The RPE of the tributary paths are

;= —o0 — B
V=23 Viayo + By
1
where a,; means Ox,/02; etc.

4 For certain problems, where other constraints are more natural and convenient,
our procedure can easily be modified.
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Let us see how 4 changes as we move away from the US on either side.
4= Z(Vﬂf + ng‘j)
2
= ; [Z Vioyy0 + Bide; + z Vi —a0 — ﬂ')]

the latter step utilizing &; = Z,a,,#,. If we reverse indices in the latter sum
of the bracket, we have

THE ANALYTIC NECESSARY CONDITION

= _,-Z; (%385 — B )V (7.4.6)
But this expression is independent of ¢ and therefore 4 is same on both
sides of the US. Then it must be zero, for suppose, say, A>0 Asd=0
on the US, 4 would then be positive on both sides at a sufficiently short
distance away.

Defining (these quantities are basic)

Vi = ; (285 — Bisx;)

the essential part of the sought condition is thus
proved

(7.4.7)
D yV; = 0. We have
THEOREM 7.4.1. For a game with one control variable &, terminal

payoff, and KE (7.4.1) on a universal surface on and near which ¥ is
smooth® we must have

A=Z°‘e’Vi=0
B=38V.=0 (7.4.8)
C=ZViVi=Q

From the point of view of semipermeable surfaces, we know that the V,
can be chsidered as the components of the normal vector ». Thus a purely
geometric version of this result runs:

If a region of &, filled by a family of semipermeable surfaces and
traversed according to the optimal ¢ (which forestalls penetration),
contains a US, at the US the normal » to any such surface must satisfy

2ap = 2 B =2 ym=0. (7.4.9)

THEOREM 7.4.2. The V; are continuous across a linear vectogram type
universal surface.

Proof. We choose coordinates so that the US lies in the plane: z = 0.
We suppose a proper US, that is, on it the vectograms do not lie in its

® Theorem 7.4.2. renders this hypothesis unnecessary.

L
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plane; in the present coordinates this means that «;, 8; cannot both be
Zero.

The US consists of a family of optimal paths and so ¥ will be known onit,
By differention so will V5, . . ., V,. Finally, V; is determined hereon by at
least one of the equations, A = 0, B = 0, for at least in one the coefficient
of V; does not vanish.

Now, taking ¢ in turn as 41, we can integrate the RPE using initia]

conditions on the US of which the above values of V; are part. The result ‘ :
will include the values of ¥ and the V; as functions over some neighbor. . E

hood of the US. From the known theory of first-order partial differential
equations, and their integration by characteristics, the V; obtained will be
the appropriate partials of ¥.® It is also clear that this V' is the Value.
Then, as asserted, the V; are continuous across the US because at it,
from both sides, the V; approach their unique initial values on the US.

Research Problem 7.4.1. Investigate the continuity of the second partials
across a ¢-US.

There are two benefits of the continuity of ¥, at a ¢-US. One is that the
ME is everywhere satisfied. Thus, techniques of proof, such as the veri-
fication theorem, apply, and we have the same assurance of the validity of
a solution as in a case free of singular surfaces.

The second concerns the control variables other than ¢. We have stated
that, when concerned with a ¢-US, we can suppose them as already fixed at
their optimizing values as dictated by the ME,;. Such values will generally
be rather simple functions of the »; and ¥,. The continuity of the latter
gives us some assurance that the other control variables will be continuous
at the ¢-US.

These conditions are necessary but, as we shall see, by no means
sufficient. Therefore we shall define a candidate for universal surfaces
(CUS) as a smooth surface which

Cl. satisfies (7.4.9) or (7.4.8).

C2. is the union of a set of paths satisfying

& = ocitz + B,  for some $, with —1 < <Z <1

7.5. THE WORKABLE CONDITION WHEN n=3

The conditions (7.4.8) (or (7.4.9)) do not directly instruct us as to how
to detect CUS, for they involve the ¥, (or »;) which are not known at the
outset of a problem.

¢ Sec for example, Reference [6], Ch. 2, §3.2 and 7.

[7'5] THE WORKABLE CONDITION WHEN
n s

When n = 3, however, matters are i

mmedi P .
components of » are not all 0, on a CUS we mediately Stmplified. - A,

must have at once the conditiops
w B ol |

%y ﬂz Y2]=0

o Py V3

We have here an equation in the z; which may be the e
several surfaces. Each such on which C2 alsoholdsisa C
]O:!r procedure will be, whatever n, as follows.
solution suppose we encounter a region of i i
paths disperse and leave a void, tha% is, a rii?)rr?]ivni(tlhzgtl(:haige et
the shaded area of Figure 7.5.1a (whenn = 2), We seek a CI;.IS sSsuch "
we find one 4B as in (b) within the void. The tributary paths .wililfl;ll):;s

(1.5.1)

quation of ope or
USand conversely,
When building the

Thus the void is filled by paths and henc

V'.wwllllat assurance have we that they constitute the correct solution ?
e ave.alread.y proved the continuity of ¥ and its partials acr

the US. This continuity also holds at the junctions such as AF and AGO'Ss

?h.e ﬁgure, ff)r. the ¥; can be obtained from integrals of the RPE and tllln

initial conditions, even though partly on ¢ and partly on the US ar:

¢ also bears functions é, V, and

(a) o
Figure 7.5.1

7 .
We have stipulated the linear independence of « and B. Should such fail on a

Particular surface, this surface may well be a thi i
art A a third i
trivial nature; (7.5.1) will hold fo); it clearly. Heanely oL US, but ofa comparsiively

ke
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continuous. Thus we have a solution of the ME throughout and techniques,
such as the verification theorem, are valid.

Example 7.5.1. A previous illustration. We apply our criterion to the
problem depicted in Figure 7.3.5. Changing the notation slightly the
KE are

&) = dulzy, z,)

&y = —u(2;, Ty)

%y =1 1<, uz0.

The third equation arises from our usual transformation of an integralto a
terminal payoff (see Section 2.4; here, of course, G = 1). Thus we have

o =u, oy = otg = 0
and f:=0, fs=—u, fy=1.
Recalling 7= ;(a,.,.ﬂ, — Bists) (1.4.7)
we compute y1 = uy,f; (all other terms being 0)

= —u,u (u2 = ﬂ)
0z,
Vs = —funt = uy
ys=0

so that the determinant (7.5.1) is
u 0 —uu
0 —u  uyy|=1uy
0 1 0
and as # > 0, our condition is (see (7.3.1))
ou

ul =T = 0.
0z,
1t clearly holds on U, U,, and D.
Of course, no more is claimed here than the usual type of *““necessary
conditions”” common in minimizing problems: derivative equals zero at
minimum of a function; Euler equation at minimum of an integral.

Example 7.5.2. Shortest route of a car, boat, or airplane to a fixed destina-
tion. The craft in question moves with a fixed speed, but its curvature is
bounded by a given 1/R. It is steered by choosing at each instant an
admissible value of this curvature (corresponding to a steering wheel or

[7.5] THE WORKABLE CONDITION WHEN 7 = 3 171

rudder with instantaneous response). We wish to pilot the craft from a
given starting position and attitude to within a given distance / of a given
destination point 4 in as short a time as possible. Or, because of the
constant speed, we can equivalently speak of the path of least length.

It is clear that we have a special case of the homicidal chauffeur game
with an immobile evader. The KE are then the same but with wy (E’s
speed) equal to zero. We replace w; by w and also write z,, «, in place of
z, 9.

The KE, given in Example 2.2.2, then become

=~

and, to attain a terminal payoff in the standard way, we adjoin
x.s = G = 1.
In this 3-space, € is the cylinder of radius / and axis Ox;. The standard
procedure applied here will yield § = +1 for the right (¥, > 0) and left
sides of the upper surface. On any z;-section of € the paths will be arcs of

concentric circles centered at (4 R, 0) as shown in Figure 7.5.2a. Such arcs
correspond to sharpest possible right and left rudder, and the paths leave a

2

’7/

- vz _
¢d=-=1 Void P=1

N

-
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Figure 7.5.3

void (shaded in the figure). Let us apply the CUS criterion. We have

w
o = _(E)x2’ ﬂ1=0

og = 0, Bs=1

and so, omitting terms which are zero,

== —(2)ow  m=r=0

which leads to 2
w w
_(—) xz 0 R
R R
WS
B v o= (R)m=0
0 1 0

The plane =, = 0, being navigable by 9§ =0, is a CUS. Returning 'fo.t.he
two-dimensional version (%;, Z,-plane with G = 1), we use as initial

conditions s
7 =0, &=1+s5(6>0, V=1

These are employed with RPE in our usual way, and they lead to tributary
paths which are also circular arcs concentric aboujc (£R, 0).

The formal details of integrating the RPE, working out ¥, etc. we leave
to the interested reader. Instead we note the simple plausibility of what we
have found. .

The US, as $ = 0, corresponds to straight travel. The‘tr}butary path's
are sharp turns which precede such a state. In the realistic space, this
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means that the craft turns sharply until pointed at the target 4 and then
proceeds there on a straight course,? as shown in Figure 7.5.3.

7.6. WHY THE NAME UNIVERSAL SURFACE?

Through problems of the ilk of the preceding. One is startled at first,
when working with the ME relevant to, say, steering a boat, to learn that
the formal mathematics would seem to dictate always sharp right or left
rudder. One knows better; boats are not piloted this way. On a long
(ideal) voyage on a uniform sea, on the other hand, the rudder should
almost always be straight.

In the last example, the US is a set of measure zero in the reduced space
&. Yet it alone marks straight travel and, despite its nullity of area, it is
the bearer of all long voyages save brief initial maneuvers.

The possibly pretentious name “universal surface” was intended to
direct attention to the importance of these loci.

7.7. THE CALCULUS OF VARIATIONS VIEWPOINT

The universality of US is further clarified as their connection to the
Euler equation becomes apparent. We adhere to the three-dimensional
case here and will resume this aspect of the subject in a later section after
the required additional analysis.

Let us suppose we have a game with integral payoff in the plane with G
linear in ¢. That is, the KE are

&= =+
Y=dp= o + f,
and G = ozp + .

(;, B; = functions of z; y only) (7.7.1)

As was done earlier (Section 5.3), we can cast all in the calculus of
variations mold. Writing
d_fZ = “2¢ + 132
dr  oud + B,

we solve for ¢ and substitute the result in

“a‘f" + 8s x
f ey ﬂld : (1.1.2)

® We have not solved this problem completely, of course. There are interesting
possibilities when A is initially within one of the minimal turn circles. See the homicidal
chauffeur problem, of which, as remarked, this is a special case.

y =

L
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Figure 7.7.1

We have reverted to the classic minimization of an integral of the type ' f

fF(m, Y, y)dz. (7.13)

The Euler equation of this integral turns out to be of zero order. That

is, it is not a differential equation at all but agrees with the US condition
(7.5.1).

Exercise 7.7.1. Carry out the preceding operations in detail and obtain the
F of (7.7.3). Show that the classical Euler equation

d

d_x F,—F,=0
here is (zigzz__:g)m + (H)ﬂ =0 (7.4

and that this equation is equivalent to (7.5.1) when the «,, 8, are free
of x,.2

The role of our analytic condition for US is now clearer. It is subject
to the same intracies of “necessary and sufficient condition” type as fill so
many pages of most calculus of variations texts. In Section 7.12 this idea
will be discussed further.

As an instance of how (7.5.1) may facilitate calculus of variations
problems, we consider

Example 7.7.1. Parking a car. The car moves as.in Example 7.5.2. Itis
located in the large unobstructed parking lot of Figure 7.7.1 and is to park

? Recall that we postulated linear independence of « and § and therefore the de-
nominators in (7.7.4) # 0.

o
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at the line L, its terminal inclination of L being the given angle u. It is to
do so in the least time.

We can confidently expect that, if the initial distance from L is at all

eat, that most of the optimal path will be straight. The novelty here over
Example 7.5.2 is that final as well as preliminary turning maneuvers are
required, the former to attain the angle u. We confine our interest to the
following question: Should the straight part of the optimal path be per-
pendicular to L or, in anticipation of the final turn, should it slope a little
p-wise (such as the dashed path of the figure)?

We use the reduced coordinates z,, %, as shown in the figure. The KE
are then

ALL STRATEGIES OPTIMAL

%) = —WCOs Z,

ae (i
and, as G = 1, we adjoin

Ty = 1.

Calculating the y; we obtain the table

i &y B: Vi
1 0 —wcos 2, (w?/R)sin x,
2 —Ww/R) 0 0
3 0 1 0

The condition (7.5.1) then is

3
- (%) sin z, = 0.

Any horizontal line is then a CUS. Our question appears to be answered
in favor of the former alternative: aside from the initial and final turns,
the car approaches L perpendicularly.

7.8. ALL STRATEGIES OPTIMAL

There may be regions in ¢ in which any value of ¢ serves to achieve the
Value of the game. We will limit ourselves to games of the type describable
by (7.7.1).

The main result will show that a condition is the identical satisfaction of
our CUS condition.

The ME is

m¢in laV, + oV, + a5ld + [B:V, + BV, + Bsl = 0. (7.8.1)
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If in a region # < &, all ¢ are optimal, then both brackets equal zg .
there. We have simultaneous equations for ¥, and ¥, and their solution

= apfls — aafs =M, v, = asffy — By = —N.
By — ayfy By — aoffy
Hence we must have identically (V,,, = V,,)
M, 4+ N, =0

but this is the form (7.7.4) of the US condition. ;

Conversely if this condition holds in a region %, then there must exig
there a function V(z,y) satisfying (7.8.2) and hence annulling both thy
brackets of (7.8.1) and hence yielding identical satisfaction of the ME. By
this function will be the Value of the game only if its partials jibe with
those of the known Value on the boundary of Z.

Example 7.8.1. The vectograms are all of type shown in Figure 7.8.1;
G = 1 or payoff = time to termination. That is, the KE are
=4, ~1<$<1.
If € is as shown, then it is immediate that
in (D any ¢ is optimal
in®@ ¢=1
in @
in (@ termination is impossible. :
Yet the condition (7.8.3) holds everywhere, for all «,, f; are constant,

y.= _1,

Figure 7.8.1

$=-1
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search Problem 7.8.1. Investigate the relation between the lack of
Pﬁma] paths and the more general CUS conditions of this chapter.

9. THE WORKABLE CRITERION WHEN » =4

V\}hen n, the dimension of & or number of state variables, exceeds 3, the

- pasic conditions

o, = Z ;= Zyyp; =0 (7.4.9)

where » is the vector normal to surfaces of constant ¥ at the CUS, no
longer determines a CUS directly. In this section we shall exhibit, when
n=4, a technique, entailing differential equations, for locating such
surfaces. This is as far as we shall go with generality, but subsequent
examples will display a few sporadic instances where we construct US with

n> 4.
The formal result will of the type

Qb+ R=0

where Q and R are functions of #,, . . ., x,. Thusif Q = 0, the equation
R = 0 will be that of a possible US. But if Q 5 0, (7.9.1) will determine

é as $(x), a function which when inserted into the KE
x.i = “i¢ + ﬁi’ i= 1, 2, 3’ 410

will render them differential equations. Since the totality of their integrals
can be expected to fill more than a surface, appropriate initial conditions
must be selected. It is likely that they will be supplied naturally by the
problem at hand.

Let a game with one control variable, ¢, and terminal payoff have a US.
An artery will be defined as the intersection of the US and a surface of
constant ¥. Thus an artery is a “curve,” that is, it has dimension n — 2.
The surface of constant ¥ containing it consists of the artery and the two

sets of tributary paths (those with ¢ = +1 and —1) feeding into it.
Let a surface & of constant ¥ be given by

(1.9.1)

(7.4.1)

;= X(s,t,7) (79.2)

where s, £, T are parameters enjoying the following special properties:
The retrograde time parameter, as usual, on the tributary paths is 7.
The artery of & is given by

z, = X(s, 1, 0). (7.9.3)

19 In this section such indices will hereafter be understood to run from 1 to 4 without
specific mention.
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Navigation in the US is accomplished with ¢ = $ and the time parameter is
t. That is, the artery consists of the paths (7.9.2) where s is held constant
and 7 held 0; thus when+ =0

UNIVERSAL SURFACES

X,.,(= -a—a’-(t—) = u;$ + B (7.9.4)

The normal » to & must satisfy (7.4.9). This means that, up to an
arbitrary multiplier which is a function of the z,, the v, are the 3-minors
(with the appropriate alternating signs) of the 4 X 3 matrix

(B

By choosing such a determination, we suppose the v, are known functions

of the z,.
As the v, are normal to &

(19.5)

T X, =0 (1.9.6)

i iw
where

X,
iw=g—' and w=s,t,orT.
ow

If w = s or T, differentiating (7.9.4) with respect to w gives
Xivw = g(“u‘; + Bi) Xy + “i‘;w'
We also differentiate (7.9.6) with respect to ¢ and use the above for X;,,:
3 Xu3 nilosd +B)+ 3 v0;$ + Bi)Xpw=0. (197
Note that :;;w does not appear as
2 a; =0.
The latter equality also implies, on differentiating with respect to ,
S vy = =2 o (7.9.8)
i i

and, similarly, when f replaces «. We make these substitutions in (7.9.7)
and reverse indices in the second sum, leading to

3 Xuu[ 2045 — v + )] =0 (7.9.9)

Define A;; = v;; — ;.
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Observe that (7.9.9) holds also when w = ¢, for then it is
2 AuXuXu =0
which is true, for A, is a skewsymmetric matrix.
Now, if & is to be a nondegenerate surface, one of the three minors of
the “Jacobian matrix,”
(-a—X-f) w=s,t7
aw kd 2 ¥

is not zero. Let it be the one obtained by deleting the column where
i = k. Then, multiplying (7.9.6) by

;Akj(aﬂ; + Bj)
and (7.9.9) by », and subtracting, we obtain
z' [;(‘”i Ay —w AH)(“:{‘; + ﬂ:)] Xw=0

where the prime on the sum signifies the deletion of the index value k.
Because the determinant | X, |;,., # 0, we must have satisfied the condition
we will call

Cu:

(7.9.10)

;(”t Ay = n A od + B)=0. (7.9.11)

This is the condition (7.9.1) promised earlier.

Actually all the conditions C, (for i # k) turn out to be equivalent.
This follows from the purely algebraic lemma below. To apply it we must
first show that

‘EjAaa;ﬁ, = 0. (7.9.12)

This follows from
; vy =0= Zj"’i(“uﬁ; ~ By

and we make replacements of type (7.9.8), which remove the «;; and 8,
and then reverse indices is one of the sums.

LEMMA 7.9.1. Let a, §, » be vectors in 4-space such that
g“;"’i = 2 Bvi=0

and « and B are lineally independent. Let A = (A,,) be a skewsymmetric
4-matrix such that

(7.9.13)

Z’Aua.-ﬂ, =0. (7.9.14)
[N .

.
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Define
A‘“’} 2“’}( Ay, — 7yB4) (7915
= v, Ay — Yy Byy). 9.
Bw r ﬂj i v g. )

Then for any two pairs of indices (u, v), the pairs 4,,, B,, are lineally
dependent. That is, either all 4,, = 0 or else some do not and the ratio
B,,/A,, is the same for all such, while B, = 0 for the rest.

Proof. Let us perform a rotation with matrix R = (r,;) in the 4-space
containing «, B, and ». Thus if &, B, 7 represent these vectors in the new
coordinates, we will have « = R&, § = RB, v = Ry where the first relation,

say, means
o = 25: ris%s

The matrix itself satisfies RR' = E 0OF Drylws = Xliulin = 05 The

u u
equivalent of A in the new coordinates is A, where A = R AR’ or, when

written out,
Aii = Et Astrisrjt-
8,

One can verify standardly and easily that
Zj: Aiiaiﬁf = %Aifaiﬂi

and that A is skewsymmetric.
We next show that the skewsymmetric matrices 4 and B transform in the

normal way, that is, as A does.
Substituting into (7.9.15)

A4,,= E (rjpap)(ruqf’q)(Astrvsr:lt) -

i.9.0,8.¢

where the dots stand for the same expression with # and v interchanged.
Summing over j gives

A= Zf‘t“-’q Ast(rmzrus - rvarus)
.8,

= zf‘t(’-’q Ast - is Aczt)ruarfv.\r
2,8,
= 4,1yl (7.9.16)
a,8
and a similar relation holds for B, §’s replacing « being the sole change in
the proof.
If » = 0, the lemma is true trivially as all 4, and B,, = 0. Ifv0,
we can now select the rotation R. Choose the first axis along v. The
second is chosen along «, which is allowed by (7.9.13). Similarly, we can
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choose the third in the plane of « and 8. Then in these new coordinates
7 = (¥, 0,0,0)

& = (0, @, 0, 0)

. B = (0, Bz: 53, 0)
with #,, &, B # 0,the latter two following from the independence of x and 5.
Now (7.9.14) is
Azsazﬁa =0

implying 5 5
28 = Qg = 0.

Note that 4, = Owhenu # 1 and v 3 1 and, from the skewsymmetry,
Ay; = 0. In the remaining cases we have (let us take #; = 1)

A= —4,=%4,

so that
A =0
A =0
_14 = & 542'
Similarly,
El,, = _Bvl = Bz Auz + 53 Avs
and so
B, =0
B;=0

Eu = .32 A42 + Bs A43-
Thus from (7.9.17)
Auv = Al4(ru1rv4 - ruArvl);
similarly,
B,, = B,, x (the same factor)

and the lemma is proved.
To summarize our conclusions let us put

U =v,A,;, —v,A
where as before v v v
Ay =y — v
We have established
THEOREM 7.9.1. In a game with one control variable, ¢, terminal payoff,
linear vectograms, and n = 4, a CUS must be a surface on which the

equivalent conditions C,, (u # v) hold and not all the ¥, # 0, where C,,

means .
(; o, Ul)$ + (; BUL) = 0. (1.9.17)
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A first example is in the form of

Exercise 7.9.1. For the KE

% = (%ﬁ’ log xl)¢ + x

2

Ey = X3
&y = 7,9
Ty = T4

carry through the computations and ascertain that the equations C,,

consist of .
(w175 log m)$ — 25*

equated to zero after being multiplied by the factors in each case:

Cia: —2,8 Cys:  —p%3 log oy
Cig: /2 Ca: — g’z
Cu: O Cay: %, /7.
To obviate the ambiguity in the determination of the v, take v, = 2%,

Problem 7.9.1. Note that in the previous exercise, z, appears only in the
fourth KE. Such is tendentious of the first three equations forming an
independent system. Treat this trio by the method of Section 7.5 and
obtain the CUS. Note that such satisfy the differential equations of
Exercise 7.9.1, that is, the KE with $ replacing ¢, but do not seem part of
the formal general solution. Are they singular solutions?

The v, in our work are of arbitrary length. If they are all multiplied by
an arbitrary function, the intermediate steps will be altered; for example,
there will be terms added to the A,. But that the final result is un-
affected we leave the reader to show in

Problem 7.9.2. If the v, are replaced by hw,, where h is a differentiable
function of #, . ..z, show that the C,, each become multiplied by A%

Research Problem 7.9.1. Our technique entails essentially the six equations
C.,., which we proved equivalent. One suspects that there should be a
more direct approach eschewing this polychotomy. Is there?

Example 7.9.1. The classical brachistochrone with bounded curvature. Let
us once again return to our vehicle with bounded curvature but let the
speed now be a given function of # and y. Then the reduction of co-
ordinates in Examples 7.5.2 and 7.7.1 is no longer possible.

Let us take #, and z, (x and y) as coordinates in the plane. If we let the

[7.9] THE WORKABLE CRITERION WHEN 7 = 4 183
speed be \/ ;z_ (see Example 5.2) we have, aside from the curvature con-
straint, the classical calculus of variations brachistochrone problem. If
x, is the inclination of the velocity vector of the z,-axis, the KE are

&) = \/ ;; COS 5

Xy = \/ x: sin z,

4= —(Wn/R$, —1<$<1

Z=1.

Tabulating o, 8;, and y,, after computing the latter from (7 4.7):
i = ;(“iiﬂi = Bisxs)

i % B Vi
1 0 N x—z cos®;  (z3/R)sin zg
2 0 \/;; sinxg —(x,/R) cos x,
3 —J/x,/R 0 (AR) sin z,
4 0 1 0
For v we use
¥y = —COS Xy, ¥p== ~—Sinay v3=0, v = Jz,

which is seen to be orthogonal to «, 8, y. After ascertaining the A, and
then the U,,* we find for C,,

_(\/_R_;:;):; + 1 cos x5 = 0.

2%,

[As a check, C,, turns out to be

xz ~ 1 2.2
—{=)dcos zg — - =0,
(R)gb s 2sm x3 +

1
2
the same thing.]
Thus ¢ = R cos z3/2x, and we are led to the differential equations for
the artery:
&y == \/ac2 COS o3
&y = J x: sin z,
%y = —COS xa/Z\/ ;2

gy = 1.

E
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The general solution of the first three is, as may readily be checked,

2, = ¢; + K(6 — sin 6)
x5 = K(1 — cos 6)
2y = H(m — 0)

where 6 = (t + ¢,)//2K and ¢;, ¢5, K are constants.

Note that the first two are the equations of the classical cycloids. We
have here an instance of a general principle which will be elucidated in
Section 7.12.

Exercise 7.9.2. A simplification of the last example. The point X movesin
the plane with constant speed w but with curvature bounded by 1/R. The
payoff is the time to reach a given curve ¥. The arbitrariness of € pre-
cludes reducing the coordinates to two, so that this problem must be
treated in the manner above.

1. Show that CUS are straight lines.

2. Show, by taking into account the initial conditions, that a further
condition is that these lines be perpendicular to #. The ideas of Section
7.10 will be helpful. (Similarly, one can attain this same perpendicularity
condition for the above cycloids.)

Example 7.9.2. The Battle of Bunker Hill. This problem belongs to a
later chapter. Here we confine our attention to the computation of a US.
We need but know the KE, which are

By = —Cy%yPa(7y)

dy = —01"’1]’1(5”4)96

By = —C1fp

#y = —1 (7.9.18)
with 0 < ¢ < 1; p, and p, are given functions of z,; ¢, and ¢, are
constants.

Writing the o, and g, in the following table and then completing it by
computing the y; we obtain

i o Bs V¢

1 0 — TPy —C1Ca%1P1Ps

2 —ompy 0 cilcamapipe + 74py']
3 —C 1 0 0

4 0 -1 0.

[7.9] THE WORKABLE CRITERION WHEN n = 4 185
The simplest »; appears to be
M = Cap1ps + TPy
Vg = Ca¥1P1Ps
Vg = -6'2%2171"’172
vy = —CooPy(Caprps + Zipy')
Cy3, Say, leads to an apparently formidable result:

bt 1
¢ = m [2¢:22,2p,2ps® + 2¢47, %201 pa’Dy/
But if we put + 2 PPy + 2090y — Pipapt)).
u=2 s W= P21I
! P1°De

things appear more reasonable:

~ 1
¢ = oz (7.9.19)
where !
Z=c2u“2+up—1’—E
D 1’12 2¢c,

The differential equations for the artery in retrograde form, become

“7°1 = Cy%yPy
Ty = 2101 Z
Zy=2
3 =1

We are going to integrate with the initial conditions
2, =85(=123), s=0.

Thus we will have x, = 7 and to the ° and ’ derivatives are the same.

Now
8- (is) _apZ _ (iai)caxspz

Ty y z
=p [z - —0"21’1] = up _piW
D2 D 2¢

“=p (K - 1). (7.9.20)

L3
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Here X is the integration constant and is easily seen to be
K= (ﬁ)—l— + 1O (7.9.21)
. $1/ p1(0)
Putting Q(7) = f p1(x)po() dr, we easily perform the full integration:

S
xy, = 1 ecaKQ

51
= ux, (use the above values of u and z,) (7.9.22)

T 2 —
2 = cK*0(r) — — f o g W@ = WO
dcy Jo py Pz 2¢y

Xy =

Example 7.9.3. The war of attrition; second version. Again this is a game
whose significance will be discussed later; here only the formal analysis of
its US will interest us. It entails a short cut.

This time it turns out that the KE lead us to the table:

i &*; Bi Vi

1 0 my 0

2 —cxy%, my —cy(myxy + myry)
3 0 —1 0

4 z Ty — T, my + oy 2y

Here c,, m,, m,, are constants. As usual, the first two columns are
obtained from the KE and the v, are then computed.
From the first and third columns we observe at once a result of the form

og¥s + v, =0
Ya¥z + Ya¥s = 0.

Then either the determinant here is zero or v, = v, = 0.

The latter alternative requires also that, say, », = 1, »3 = m,. Ascon-
stant v, lead to null A,; our general criterion is trivially satisfied by all
surfaces. These values of the normals themselves, pertaining only to the
surfaces of constant V, tell us nothing.

As for the first alternative:

& mx, + myx

12 12 21 2 2

= 1 (Ca%y" — M, =0.
1 2 2,

x0T,
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The problem to which we will apply these results outlaws »; = 0 so that
we are left with the surface

zy = \myfcy. (7.9.23)

As will be seen later, this just fits the requirements.

7.10. A TEST FOR A VOID AND A FURTHER
NECESSARY CONDITION FOR A
UNIVERSAL SURFACE

We continue with games having KE (7.4.1). The initial conditions are
glven on a surface & which may be the terminal surface or some other that
arises during solution to play a similar role. Suppose there is a curve
2" on € at which ¢ changes value, that is, 4 must change sign at ¢, if
not on %, then at least in & near %.12

There will be a family of paths emanating from % on each side of " and,
generally, one of two things will occur. Either the two families will
mutually intersect and thereby induce a dispersal surface, as was studied
in Chapter 6 (see Figure 6.5.1), or they will diverge and leave a void, free
of paths between them, indicative of a universal surface (see Figure 7.5.1).13
We seek here a criterion to distinguish these two cases.

We define

D= E iy — gy DV, (7.10.1)
%,
where y,; = 0y,/0x,.

THEOREM 7.10.1. Under the above circumstances, if V exists in & near
% and has continuous partials, and the paths leave a void, then at ¢~

D<O. (7.10.2)

Proof. In & near %, A is a continuous function which changes sign at
some surface passing through " and so is decreasing as x passes through
this surface in the direction from the side where ¢ = —1 to that where
¢ = +1. If the paths from these two sides leave a void, then, at ", 4
must increase more rapidly with = on the former side than on the latter.

These rates of increase cannot be compared through the use of 4, for
(7.4.6) evaluates this quantity here also and shows it independent of ¢.

We must look to 4 which, after a calculation along the same lines,
turns out to be D¢ + E where D is given (7.10.1) and E is an expression
of similar structure. As4 must be greater (or at least equal) when § = —1
than when ¢ = +1, we have (7.10.2).

12 In Example 7.5.1, if % is taken as y = O, then one can verify that 4 = O and § is
determined by sgn 4.
12 Of course, an intermediate case is also possible.
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COROLLARY 7.10.1. The condition (7.10.2) must hold everywhere on 4
¢-US with linear vectograms.

For we may cut the US with an arbitrary smooth surface and, using the
values of V" on it as initial conditions, let it play the role of % above,
because the solution on the far side will agree with the original. The
intersection with the US will be 2¢"; (7.10.2) holds there; hence at all of
the US.

Of course, should D = 0, we could proceed with higher derivatives of
A. But we shall not pursue this subject. It is beset with the classica]
tribulations of attempting sharply to prescribe conditions for a minimum
in terms of derivatives. When working individual problems, we can take
D < 0 as a strong criterion for a US and expect that its negation, D > 0,
on ¥ will indicate a dispersal surface. A typical instance is

Exercise 7.10.1 Show that in Example 7.5.1
D = uu,,
so that ridges in Figure 7.3.5 are eligible to be US but not the valleys,

7.11. TEST FOR A TRANSITION SURFACE

Although this topic in substance is not germane to the present chapter,

its formal aspect is related.
Suppose that, when dealing with the integrals of the RPE, in some stage

of the solution of a game of the type of the preceding sections, we encounter
a surface & on which 4 = Ya,V; = 0. That is, on each path, we find a

certain value of 7 such A(7) = 0, and the totality of the points at which

this occurs comprises our surface.
Under what conditions are we justified in asserting that % is a transition

surface, that is, one at which ¢ changes from one of its extreme values to

the other?
As we proceed along an optimal path, by the same reasoning as earlier,

fi) = —2 viVi
i

and is independent of ¢. Suppose at &, A#0. Asd=0 there, then A
certainly changes sign upon crossing . Therefore it cannot be that &
remains unchanged, and so & is a transition surface. Thus we can state

THEOREM 7.11.1. When the integration of the RPE leads to a surface
crossed by the paths and at which

Z“iVi=ZﬂiVi=O, Z%-V,-#O
1 B %

then this surface is a transition surface.
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The utility of this result: Suppose that we have analyzed a game
according to the ideas of this chapter and have detected all surfaces at
which

Z“iVi = Zﬂtl/; =29V =0.

Then should we encounter as above a surface on which 4 = 0 but which
does not belong to this class, we know at once it is a transition surface.

7.12. FURTHER DISCUSSION OF THE BASIC
NATURE OF UNIVERSAL SURFACES AND
THEIR RELATION TO THE EULER EQUATION

We will erect our ideas around a generalization of Example 7.9.1 and
Exercise 7.9.2, but will adopt a broader point of view. We consider first
the general.

Problem 1. The point x moves in the plane (coordinates = 2y, x,) with a
speed w(®;, x,) which is a function of position. To find the paths which
enable it to reach a given curve % in the least time.
Thus the KE are

# = wcos ¢

# = wsin ¢
and G = 1.
Problem II. The same, except that the curvature of x’s path is now
bounded by 1/R.

The KE here are
% = WCOoS x4

%y = wsin z,
g =w—¢/B), —-1<4¢<1
and similarly G = 1.

The assertion we wish to make here, special instances of which have
been encountered earlier, is

The universal surfaces of Problem II are optimal Daths of Problem I.
The proof rests in part on

Exercise 7.12.1. After adjoining %, = 1 to the KE of Problem II, show
that the C,,, yield

W= = W, COS X3 — W, sin a, (7.12.1)

= e~c

(Here w; = dw/ox,).

%
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Another part depends on the less routine

UNIVERSAL SURFACES

Exercise 7.12.2. For Problem I along an optimal path show that

$=wzcos$—wlsin$.

This can be done by our standard procedure, whlch furnishes first § as
a function of the %, and ¥, and, secondly, supplies Z; and V, (the RPE) as
functions of the same variables, by differentiating the former functions,
But other means are possible, for (7.12.2) is tantamount to a second-order
differential equation in the z; alone and is the equivalent of the Euler
equation for Problem I.

Now if we replace ¢ by the ¢ of (7.12.1) in the KE of Problem II we
have the differential equations of the paths which comprise the US. The
third of these, %; = w$/R, shows that x, satisfies (7.12.2). Thus, through a
suitable correspondence of initial conditions, the 2, of Problem II will be

identical with the ¢ of Problem I.
The interpretation of all this has been foreshadowed. As in Example

7.5.2, the tributaries to the US, where $ = #1, are sharpest possible

turns. That is, in Problem II, they correspond to an early maneuver to
obtain quickly a state—attitude and position—from where x can follow
an optimal trajectory of Problem I. And these positions constitute the US.

In broader terms, we see that the US of one game may be tantamount to
the solutions of another of greater dimension. It would be interesting to
explore the generality of this phenomenon, but even now we can perceive
why the construction of US constitute a formidable problem. They beara
kinship to integrals of the Euler equation, and we should expect a full
theory to be beset by all the complexities of the calculus of variations.

7.13. RESTORATION OF THE TOTALITY OF
CONTROL VARTABLES

For reasons already explained, we have confined the treatment of US, of
the linear type, to those entailing a single control variable which has been
termed ¢. We now revert to the general situation with the full complement
of them. However, one will still play a chief role, still termed ¢ (or y if it
is maximizing) and our subject will be a ¢-US.

‘We will thus adopt here a deviant from our usual notation: the above
¢ will be written without a subscript and ¢y, . . ., ¢,, 9y, . .., 9, will denote
the other control variables. The linearity of KE in ¢ is still essential;

their form is still
%= o + By

(1.12.2) -
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We will make an assumption whose strength is between that of the
minimax (Section 2.4) and a demand that the KE be separable in all
control variables.

The a; are free of the ¢, . (7.13.1)

That is, «; is at most a function of the x,, whereas §;, may involve

x," ¢k’ '/’r
Then the general condition for ¢-US (or better, a $-CUS) is the following

generalization of (7.4.8):
2

min max Y gV, =0 (B)

b w1 i
Vi=0. (»

Z Vi

Here () is precisely the same as its earlier counterpart. In (8) the min
and max are taken in the same sense as has been usual in our theory
they determine each ¢, and y, as functions ¢, and ¢, of the z, and V,, as in
our earlier derivation of the ME; () can be written also as

Z ﬂi(‘l_’m Pp2)V; =0
analogously to the ME,. In (), y, still means
;(“wﬁf — Buy)

but in forming the derivatives, such as f;; = 0f,/0;, any appearing ¢,
or y, are treated as constants. The latter are then replaced by the above
&, and §, functions of the x, and V.

The proof is substantially the same as before. The general ME is

min max 3 (¢ + B)V;

V,=0 ()

(7.13.2)

¢ j Vi [
= min §(3 «,¥;) + min max 3 4,7,
¢ (7"
= min ¢A4 + min max B = 0.

As in Section 7.4, an interior minimizing ¢ demands that both terms
van1sh thus («) and (). Finally (y) follows as earlier by the demand that
A be 0 on the CUS. For on the tributary paths we must have our usual
RPE, which here are

—(%0 + B),
Vj z V(OCUO' + ﬂw)

O
x; o= —sgnA
o

L
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In the second line the derivatives with respect to , are reckoned with the

$, and v, behaving as constants. Thus the stage is set for a repeat per- ’

formance of the calculation of 4.

But when we try for a repetition of workable conditions, such as we did
earlier for n = 3 and 4, we encounter difficulties. Even the former
simplicity of the n = 3 case is gone, for the equations (7.13.2) are no
longer linear in the ¥,. But they are still homogeneous, that is, are
satisfied when all ¥, = 0. The new criterion will be the condition on the
z, which ensures that nonzero V; solutions exist. The ensuing examples
will display several possibilities.

Actually many particular problems yield without a panoply of formal
ideas. It may be that the restored control variables are few in number and
the structure of the solution is apparent. For instance, if these variables
are all involved lineally, then each can have but two possible values, and
which of these is correct may be inferred from direct simple considerations.

It should be noted that when we derive the ME in our standard manner,
(B) will still hold. This is because of our assumption (7.13.1). Thus, as the
¥, are continuous across a US, the restored control variables will be also,

Example 7.13.1. A generalization of Examples 7.3.1 and 7.5.1. We return
to our former problem with the 45°-triangle vectograms. These belong to
the minimizing player P. But now we adjoin a maximizing player E who
will have circular vectograms with radius v(%,, #,), a smooth function over
the plane. The resulting velocity of x is to be the sum of the selections
from the respective vectograms. The KE then are (compare those of
Example 7.5.1)

# = ¢u + vsiny

Zy= —u-+vcosy

#y =1

—1<¢<1; u>0,0>0; assume always v < u.
Computing the y, and tabulating:

oy B: Vi

u vsiny u,(v sin ) + uy(—u + v cos p) — uvy sin
0 —u+vcosy —(—u; + v, cos Pu
0 1 0

W N =™

Our equation (f) is here

max [v(V; sin  + Vycos p) — uVy + V3] = 0.
14
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As usual, putting p = V2 + V32,

sinz;‘::Kl, cos § = -2
) P
and (B) is ’
v UP—qu'*‘ V3=0.

But(«)isuV; =0and asu > 0, we have V; = 0. Asv < u, X always
moves downward and so ¥, > 0. Thus p = V,and % = 0. Thatis,ona
US, E always strives to move x vertically upward.

Thus () is

Vo(uy — v)u=20

and the sought US condition is
u1 — U = 0.

This is a “necessary” condition only, and remarks made earlier on this
point apply here also.

Example 7.13.2. The homicidal chauffeur game. We return to Example
7.5.2. which deals with the car without the pedestrian and adjoin the
latter. As above, this means that we add to the KE terms corresponding to
a circular vectogram of radius w,, the speed of the evader, and we write
once more the KE of the title game.

& = —%x2¢+w2sintp,

dy = 21
z—i‘x1¢—W1+W2°°SW

=1, —1<d<1,w>w>0.
The next step is to form the matrix:
i % B: yit
1 —(w/R)x, W, sin p —(—w; + wycos p)
2 (Wy/Rx, —w; + Wy cos P We Sin
3 0 1 0.

From (B) we obtain, just as in the previous example,

v,

sin § = -;- s cos Y = (7.13.3)

-2
P

14 We suppress the common factor wy/R;.

ki
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Then (p) yields
Vl(w1 — W, E) + Vg,(w2 —Iﬁ) =Vw, =0
P P

so that ¥, = 0. If also V, = 0, (§) would imply the then absurd con.
sequence V3 = 0; thus ¥, # 0. As(a)is

xV, =0
we have as a CUS:
z, = 0.

This is the same result that we found in Example 7.5.2 and the dis-
cussion there largely applies. Optimal play will be of the direct type

already depicted in Figure 1.5.2a.1° :
To see that this is so we must study the tributary paths to the US, but we

do not require a full analysis. We are mainly interested in y, E’s optimal -

travel direction.
Recalling that the ME, is (we return to the x, y symbols)

"';':‘l[sz— 2V,]¢ — wilV, + wep +11°=0

and, as on the US, 4 = 0, the bracket vanishes. As & =0,y > 0onthe
US, there we have ¥, = 0. From our standard procedure

Vs

sinp=-=2=0, cosp=-+>0 (7.13.4)

P P
we have ¢ = 0 (clearly ¥, > 0 on the US). Consequently, the points of
the US correspond to P’s traveling straight and E also, fleeing directly
from P.

Turning to the tributaries, we find among the RPE

Vv, = G%Vv, V, = —G%Vz
where ¢ = +1 depending on the side of the US. These equations imply
that the vector V,, V, rotates with angular speed w;/R. But E’s velocity,
as seen from (7.13.4), lies along this vector and it too so rotates. But such
is also the rotation of P on his sharp turns, so that E’s velocity does not
turn relative to P; in the realistic space E’s path is straight.

Finally, as ¥, and ¥, are continuous at the US, so is E’s flight direction.
It follows that E’s original velocity must lie on the tangent to one of the

15 In Chapter 10 we shall learn that part of the lower z,-axis can also be universal.

But in an inverted sense, as E now pursues P.
18 In the terminal payoff form, this 1 is replaced by V.
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mjni.mal curvature circles. Thus the direct play, which we discussed in
Section 1.5, is optimal.

Research Problem 7.13.1. The asymmetric homicidal chauffeur game.
Let wy, the evader’s speed, be, instead of constant, a function u of , and
xg. - Show that the condition for a US is now

Wiy + (T — Uz, W22 + 252 = 017 (7.13.5)

The speed of E has been made a function of his coordinates relative to
P. A'fanciful way of realizing this problem is to think of P as a car with
headlights (whose beams are perhaps asymmetrical) and the chase taking
place on rc.>ugh terrain in the dark. The evader’s speed is the higher the
more heis illuminated. Thus Phassomethingto gain by pointing askew and
keeping his lights off his quarry.

Since the equations (7.13.2) are homogeneous in the V, whenn =3
(«), being of degree 1, can be used to eliminate one of the ¥, say V, ’
from () and (y). These two can then each be written as an eq'uation iz
V1/Vs. Our workable condition will then be that these equations possess
a common real root.

Example 7.13.3. Let the KE be
& = 5%, + cos ¢, + Ty
Zy=¢ + x,
&3 = &, Sin ¢P,.
Trying for a ¢,-US leads to
2’V + V=0 ()
V10 + 2V — p = 9 ()]
zy 29V
- (T)(leVl — V) — (Vi + Vo) =0 »

wher‘e P =.\/ Vi® + (2, V3)% 0 = sgn (z, V).

Ehmmatlr_lg p between (8) and (y) gives us an algebraic equation in the
Vf' Removing the p from (B) by squaring gives us another. We end up
with three homogencous algebraic equations: («) and

#12Vy(22,Vy — 23Vy) + (Vi + V)2 =0
x22(V10' + Vz)z = V12 + zlesz.
Eliminating the ¥, as above leads to
2, [05%5(22,%07/ C* — 1 — 24(C? — 1)) + Cy] = 0

" Assuming z,v, > 0; otherwise the + is changed.
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where C = 2, (0 — 23%), 0y = sgn (%, ¥;5C), an algebraic equation of g
CUS. &

Exercise 7.13.1. Show that, in the previous example, the condition for 5

9-US is similarly homogeneous and find the ultimate equation.
Research Problem 7.13.2. Is it always true that (7.13.2) are homogeneous
in the V;?
7.14. SEMIUNIVERSAL SURFACES

Such are singular surfaces of type (+, u, p), that is, tributary paths

appear on one side only; parallel ones on the other. We display their

existence by the following example.

Example 7.14.1. The gunner and approaching target.'® The KE are

= —1

m= -y 0y <.

The payoff is integral with G = yg(z); & is the first quadrant: = >0,

m > 0 while % is its boundary, the two positive half-axes. Further, g(z)
is positive, smooth, and decreasing.

The interpretation is of a gunner located at the origin (z = 0), firing at
an approaching target at #, this coordinate diminishing at a unit rate. At
any time the gunner has a supply m of ammunition which he is at liberty to
fire at any rate from zero to unity. The control variable  is this rate; mis
a state variable.

It can be shown reasonably'® that the kill probability is an increasing
function of { yg(x) dx, the integral extending over the partie, for a suitable
function g as above. Thus the above G.

The optimal strategy could hardly be more obvious: the gunner waits
until the target is as near as the ammunition allows, that is, until he can
just sustain full fire throughout the final interval of the target’s approach.
The optimal paths, then, are as in Figure 7.14.1.20

Our interest is the semiuniversal surface, the line OA in the figure.
Tributary paths appear on one side only.

It is clear that if % were suitably modified, any of the 45° paths could be
made to play the semiuniversal role. Note the contrast to US, where only
a small number of rather special surfaces are usually eligible and they are

** A simplification of one case of the bomber and battery game in the Appendix,
Example AS.3.

19 See Appendix Al.

20 Compare Figure A5.4.

[7.13]

7.14] 197

etermined from the KE and are in good part independent of € or &.
s distinction precludes a clean, sharp theory for semiuniversal surfaces.

SEMIUNIVERSAL SURFACES

We work, on the same grounds as for US, with a game of terminal payoff
with n 2> 3, one control variable ¢, and linear vectograms. That is, as
pefore, the KE are
f=aptf, —1<¢<1

For a possible semiuniversal surface we select a region % on a smooth
surface & comprised of optimal paths emanating from an initial surface
€. On Z, we suppose regular behavior; sayd = —g = — sgn 4. We
wish to know conditions permitting the use of % as an initial surface for
optimal paths with § = +¢. For quantities pertinent to these new paths
we shall use notations V*, 4*, etc.

THEOREM 7.14.1. Sufficient conditions for %, as above, to be a semi-
universal surface are

(1) Throughout Z, the plane of the vectogram is not tangent to &,

(2) OnZ, sgn 2 v:V:* = 0. (The V;* canthenbe intrinsically determined

%
on Z as shown below.)
Proof. Let us select the parameters s, . . .
8,1 = 0. On this curvelet Hbe J(s,, . .
of # are then

, S, 10f € sothatfor ¥ NE,
- » Sp—s). The parametric equations

T =27, 5,...

> Sp_a) (7.14.1)

where the right sides are integrals of the RPE with the usual initial
conditions, that is, as determined from H on €. These RPE also imply
that

B = —oo; + ;.

s Sy o)

On &,

V=Js,..

(7.14.2)

Figure 7.14.1

.
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We are going to use (7.14.1) and (7.14.2) as initial conditions in the
usual way, but for the paths obtained we must have ¢ = +o. The
customary initial conditions, relevant to the parameters sy,...,5,,, 1
are then

v oJ o,
— == )z, V¥, Tp=—, k=1,...,n—=2
ds, Os, ,Z" 5T Os,

oV

- =0= 2 (—oa; + BHV*
or i

and we adjoin the ME for the new system
0 =3 (oa, + BIVi*.

The last equations are equivalent to
Sl (= 4% =3 pV* =0,

the determinant
Ti

Ly n2 # 0
&
B:

in virtue of (1). Thus we can find the V;*. As A* =0, = —sgnA*if
the latter # 0. But (2) requires that

o= —sgn A* = sgn 3, y;Vi*

and this suffices for at least a local path construction.
COROLLARY 7.14.1. On a semiuniversal surface,
A* = B* = 0.

Suppose Z is not all of & through failure of the condition (2). Then on
the boundary of Z, we should expect that

Z yV* =0

But this equation and the two of the corollary are just our necessary
conditions for a US, implying that one may emanate from Fhe boundary
of #. For a typical instance of such a possibility, see Figure 7.14.2.

(7.14.3)
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Figure 7.14.2

Here & is AC, but Z is BC where (2) holds. At B, then, we have (7.14.3).
The US is curve BD. Its tributaries on the lower side merge with those of
#; those above the US are an extension of family of paths on the far
side of &.

Observe that if (1) and (2) hold on a surface, they hold on neighboring
surfaces. Thus candidates for semiuniversal surfaces occur in families.

It is hard to say much more. Of the abundance of candidates, the few,
if any, will depend on € and &. Asin our example, such a one must be the
extreme of a family bounding a void (or “semivoid”).

The wonder is, that considering their profilic possibilities, semiuniversal
surfaces have appeared much more rarely than US in the examples we
have considered, both in and out of this book.

An interesting possibility appears in Example A4 of the Appendix.
There € is at first a circle and two transition curves emanate from it. As
the radius becomes zero, each curve becomes semiuniversal.

Problem 7.14.1. Taking the KE of Example 7.14.1

921 = -1
Ty = -y
zy = pg(w,)

leteFbex;, =0; & v, >0. Take H = z, and suppose that g(7) > 0 for
0 <7< 7 butg(r)) =0. Take & as a family of optimal paths through
the curve in €: 2, = 0,2, = 5, &y = J(s) where f'(s) > 0. Show that &
is a possible semiuniversal surface as long as = < 7,

.



CHAPTER 8
Games of Kind

Typical of a game of kind, in distinction to one of degree, is a pursuit
game in which we are interested in what conditions make capture possible
for the pursuer or escape for the evader, rather than seeking the best
procedures in terms of optimizing some continuous payoff.

Until now there was, as far as we know, only one approach to such
problems. We have dubbed it the Method of the Explicit Policy. 1t
consists of, say, demonstrating the possibility of capture by exhibiting a
particular strategy or policy of the pursuer which attains it. Its weakness
is that, in almost all positions, there is no determinate best decision for
either player; to seek a sequence is to grope in the dark. One can seldom
solve all cases of one particular problem, let alone solve all problems of a
class.

The innovation here emphasizes the hypersurface, called the barrier,
which separates, in the space of starting positions, those of capture from
those of escape. For starting points on the barrier, optimal behavior leads
to a contact of the terminal surface without a penetration. We term such
an outcome neutral and regard it as intermediate between capture and
escape. The advantage is that for neutral outcomes alone do there exist
determinate optimal strategies.

Differential equation techniques, similar to those of games of degree,
lead to optimal strategies and paths and thence to the barrier. The
global answer to capture-or-escape question then hinges on whether or not
the barrier divides the playing space into two parts.

One of the chief difficulties is the finding of the proper initial conditions
or the means of attaching the barrier to the terminal surface. We have
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discovered three, all rather different, one in particular being tantalizingly
subtle. Between them they cover all practical instances thus far encountered
but do not appear to be exhaustive.

Significant examples of problems solved by these methods will appear
in the following chapter. Space here has limited us to simple illustrative
instances,

8.1. INTRODUCTION

In games of degree, we recall, the players strive to maximize and
minimize a certain payoff capable of assuming a continuum of numerical
values. For any partie, the particular value of the payoff is not ascertained
until termination, that is when x reaches the terminal surface €. Thus
our whole theory of such games is erected on the presumption that ¥ is
actually reached.

In'this chapter we discuss games of kind, in which the achievement of
termination itself is the quintessence of the problem.

We shall almost always suppose that one player wishes termination and
his opponent does not: these opposing desiderata are the conflict of the
game. But other circumstances are possible and indeed useful. For
example, collision avoidance between two moving craft.! Both pilots
wish to prevent “termination” (= collision in our format). Although such
a situation is not a differential game, it is amenable to the same techniques.

We shall use the vernacular of pursuit games as a surrogate for all cases.
That 1:s, we will assume that it is P who desires termination—capture in a
pursuit game—and E, its avoidance.

To subsume these games technically into our general scheme we can
assign numerical values to the outcomes, retaining the concept of the
payoff. For example,

+1 for no termination or Escape
—1 for termination or Capture

enab.le P and E to remain the minimizing and maximizing players.
With such payoffs, the general theory of games defines the Value as

-I-.l if there exist a strategy for E such that, when he plays it, termination
will never occur no matter what the strategy of P. (8.1.1)

-1 if‘ there exist a strategy for P such that, if he plays it, termination is
certain to occur no matter what the strategy of E. (8.1.2)

! To appear at a later date.

e
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Although we shall not require the formalism of numerical payoffs in
practice, note that it is consistent with the general nomenclature to define
the two particular strategies mentioned as optimal strategies for E and P,

In contrast to games of degree, in most cogent examples the optimal
strategies are not unique. Indeed they are legion. Consider, for example,
any reasonably simple pursuit game in which P is so kinematically superior
to E that he can capture from any starting position (V(x) = —1 for all
x €&). As we are interested only in capture at some time, P may loiter as
long as he likes; there are never preferred values of the control variables,
Similarly, if the superiority attaches to E, so that escape is always possible,
E has complete freedom of action save possibly when capture is imminent
and even then he may evade with as close a shave as he pleases.

To prove that P can capture or E escape, it suffices to exhibit one par-
ticular strategy that will enable him to do so despite any opposition. This
most obvious technique for games of kind we shall call the Method of the
Explicit Policy.® An instance is:

GAMES OF KIND

Example 8.1.1. The game of two cars. The points P and E move in a
plane each at a fixed (or bounded) speed and each with its curvature
bounded. The four bounds may be any magnitudes. Capture, as usual,
means [PE] < /. Under what conditions can P capture E?

If P has the higher speed and at least as favorable a curvature restriction
as F, capture can be attained. For P can first go to E’s starting position and
then follow his track.

Generally such a display of a particular policy suffers the drawback of
there being no systematic way to find one. We have to be ingenious anew
in each case. For example, it seems reasonable that P could capture with
a slight inferiority of curvature provided he was sufficiently superior in
speed and / is generously large. How do we exhibit a policy to prove it?

We offer in this chapter what appears to be an approach of greater
generality, with wide, if not universal, applicability. By a slight but natural
alteration of the criterion, we incur a subset of & on which optimal strate-
gies are determinate if not unique. Artificial, inefficient policies, as that of
P above, are avoided.

8.2. THE BARRIER CONCEPT

First we modify, for a definite purpose, the definition of termination.
We demand that x not only reach %, but also penetrate it. Should x

2 As the ensuing example will show, it may be convenient to admit playing policies
which are not strategies.
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reach & without crossing it and ultimately return into &, the outcome will
be considered as neither capture nor escape but as a third alternative.
Numerically we can say that now

payoff = 0.

We will refer to this third possible outcome as newtral. It is to be
regarded as the delineating case between capture and escape. Our motive
is that only in cases of neutrality (V' = 0) is each player’s actions, as he is
on the verge of a worse payoff throughout play, decisive. Generally it is
in this case alone that there exist definite and determined optimal strategies.
Here there is material for a calculable theory.

We recall that a differential game is really a family of games, one for
each starting position. One of three possibilities must occur:

(E) (8.1.1) holds for all starting points of &.
(O (8.1.2) holds for all starting points of &.
(M) & contains both kinds of starting points.

The set of starting points for which (8.1.1) holds we will call the escape
zone (EZ); those for which (8.1.2), the capture zone (CZ).

When (M) prevails, the two zones will each be a region. Generally they
will be separated by a surface which consists of the starting points for which
the outcome is neutral. This surface will be called the barrier.

The nucleus of our approach will be the ascertainment of the barrier.
Knowledge of it will automatically engender that of the CZ and EZ and so
distinguish the situations from which P can force capture or E escape
whenever (M) obtains. And the latter happens in the most interesting
cases, for when (E) or (C) holds, the situation is often one sided enough to
be transparent.

Even when (M) does not obtain, our ideas can apply. For the game will
always entail parameters—speeds, capture radius, etc.—which appear
formally in the coefficients in the KE, H or G or specification of #. By
varying them we can often occasion (M) when it did not pertain originally.
Thus we imbed the game in a continuum by varying some or all of the
parameters.

For example, we have seen an instance of the game of two cars in
which (C) holds (the capture zone = &). Now suppose E has the greater
speed. If initially E is pointed away from P, he can escape by going
straight. But for a starting position in which P and E point toward one
another and are sufficiently close, it is intuitively clear that capture ensues.
Thus both zones are not vacuous. There will be a surface %, the barrier,
separating them.

Now starting from such a case, let us continuously vary the parameters

ad v
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in some way that tends to favor P. We know that this can be done so that
at some point & becomes all capture zone. What happens to the barrier
then, which we suppose has deformed continuously? It will, at some
critical point, have ceased dividing & into two parts.

GAMES OF KIND

This situation is general. We shall extend the term barrier to include '§
surfaces which do not divide & into two parts, when such a surface -§

derives from the barrier (in the original sense) through a continuous
change in the parameters. This definition may appear vague; what we
have in mind is the result of a construction which will be given shortly.
The barrier in this extended sense—when it does not necessarily delineate
the capture and escape zones—still constitutes, as we shall see, an im-
portant singular surface when certain basic continuous payoffs are adopted

and the game becomes one of degree. Generally the barrier is then of type -

(p, =) or (—, =), is not crossed during optimal play, and marks a dis-
continuity in V. Although it may not bound an escape zone, it does
delineate a region in which P’s task is more difficult.

Inasmuch as there will be determinate best ¢ and v only when the out-
come is neutral, that is, X is on the barrier, we shall use the term optimal
strategy when dealing with games of kind in this limited way. That is,
&(x) and %(x) are now defined only for x of the barrier.

Perhaps some will find the distinction of the neutral outcome objection-
able. As % is a closed set of &, any meeting of x with € should be capture.
Penetration of ¥ is meaningless in that the no KE are postulated for x
outside of &.

These objections can be assuaged by the following modification of
concept which permits retention of the convenient barrier methodology.
Let us think of a surface %, parallel to %, a distance ¢ away, and within &£.
We shall assume that the continuity of the KE causes all barrier con-
structions based on %,, to be near those of % if ¢ is small. Let E, starting
from some x of the escape zone, pick & so small that x is in the escape zone
relative to %,; then let him play as if %, were the terminal surface. His
strategy will be arbitrary unless x is on the new barrier; there he plays
optimally. But a neutral outcome in the new game means escape in the old.
If x is in the capture zone, P plays optimally as in the original game.

Very basic is the fact that

The barrier is a semipermeable surface.

For let x be on the barrier separating the escape and capture zones.
Now P must be able to select a value ¢ of ¢ which prevents x from entering
the escape zone, for otherwise E could attain escape starting from X.
Similarly, E can keep x out of the capture zone. These abilities to prevent
penetration comprise the definition of a semipermeable surface.
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Note that, in addition, a particular orientation of this surface is required;
pamely, the penetration direction which ¥ can prevent must lead into the
capture zone.

Thus we must next turn to

8.3. THE CONSTRUCTION OF SEMIPERMEABLE
SURFACES

Let & be a smooth surface in &, and at each of its points let v =
(¥ - - - » ¥u) be its normal vector. That is, each ¥, is a function of the z,
defined when x € &. The length of », as long as it is not zero, is arbitrary;
it can be taken as any convenient nonzero function of x when working
problems. But the orientation of ¥ is important. Thus » is determined up
to multiplication by an arbitrary positive function of x.

The condition that & be a semipermeable surface

min m:lx ,-211’" fi{x, ¢, p)=0. 8.3.1)

This equation can be regarded as our usual ME with a change of
interpretation. Indeed (8.3.1) will be referred to as the main €quation.
However, we shall give an independent derivation.

As f; is &, the ith component of the velocity of x when ¢ and Y are
played, the sum in (8.3.1) is the component of this velocity in the direction
of v. Then this sum’s being >0 [<0] is equivalent to x’s penetration of
& il:l the [opposite] direction of ». Now let ¢ supply the min in (8.3.1);
we have

0= m:lx ; vg’f;(x’ $’ 'P) > lz ‘V;f;(X, S;’ V’)

for any 4 on the extreme right. Thus the use of ¢ assures no penetration in
the » direttion, for any . Putting the same shoe on the y foot concludes
the proof.

‘We select a definite ¢ and  for each point of & which furnishes the
min and max in (8.3.1). Furthermore, we suppose them reasonably
smooth functions over &*. Then at each point of &, x will have a definite
velocity {f,(x, §, §)}.

It may be that this velocity is everywhere zero on <. In this case we
shall call the semipermeable surface static. The equivalent formal
condition is obviously

Sz, &, %) =0, (8.3.2)

E?:ample 8.3.1. Let n> 1 and P and E each choose unrestrictedly the
direction of a unit velocity vector, the net velocity of x being the vector

i=1,...,n

LR
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sum of these two choices. Then, obviously, any smooth surface is sem;.]

permeable. The players choose velocities lying along » but in opposi
directions. It follows that the surface is static.

But the case where (8.3.2) nowhere holds is much the more interesting
Assuming a nonzero velocity at each point of &, from (8.3.1) it is cleg
that this velocity will be tangent to # there. From the existence theoren,
for differential equations, we see that & will thus be a union of paths su]
as are described by x when governed by the strategies ¢ and 4.

On the assumption that & can be imbedded in a family of semipermeabj
surfaces which univalently fill a-neighborhood .#” of it, we can derive a set
of RPE for these paths. The derivation contains no formal novelty. It j
the same as was done before with the v, replacing the V.

Explicitly, the required assumption is that » can be extended throughoy
A". Choose particular smooth ¢(x, »), #(x,») satisfying (8.3.1) and
defined for x € A", Write (8.3.1) in the “ME, form”

2 vij;(x’ $9 ¢) =0. (8.3,3) 7 E

i

Then let »; be functions on .4 satisfying (8.3.3) there and equaling the = |
“F . Thus we are led to

original »; on &. Such is the needed extension.
Let ¢ and 9§, functions of ,, ¥;, furnish the min and max in (8.3.1). We
differentiate 3 v,fi(x, $, ) with respect to z, and consider the different type

1
terms. First, those due to the externally appearing »; give, where »,, means |

Ov,/0z,:
> vufdx, §, ). (8.3.4)
The terms due to the explicitly appearing z; in the f; are
E '”if;i(x’ $a '/)-) (83.5)

H

Next, those #; appearing as arguments in §(z;, »,(=,)) which are

o 94
Y, buralires
,Z ‘% 0, 0z,
which can also be written as
53 a)
—_ ’, " 1.
%(aqsk E i oz,
But (as we reasoned once before), if &, is an interior minimum, the first
parenthesis vanishes. If it is an exterior one, ¢, remains for all local x at

one of its extreme limits, which we may suppose to be constants. Then the
second parenthesis is zero.
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Similarly the terms entailing the arguments of ¢ vanish in any case.
Classical methods of analysis can be used to show the existence of
F(x) defined on A4 such that, if the »; are of proper length,

oF
Y=
0z,
" This implies
9 _ O
ox; Oz,
or ¥y = Vji
We make this replacement in (8.3.4), which becomes
; ik
which is also
o, da,
i ox; dt

the latter derivative pertaining to the motion of x when ¢(x, »(x)) and ¢
are employed as strategies. But the last form of (8.3.4) can be written as

’.’J == Z”tﬁj-
1

Finally, we take this equation and the original KE with ¢ and v re-
placed by ¢ and ¢ and reverse the time direction (+ replaces ¢) in both:

Zy=~f% &P, V= 2ufifx, $ ) (8.3.6)

our new RPE.?
Research Problem 8.3.1. Can the RPE (8.3.6) be derived without utilizing
the neighborhood A" of &7

Although this problem is a natural one at this point, its practical
consequence is not great for us. To apply our ideas to games of kind, we
shall find the membership of & in a family useful.

In general,* we can pass a unique semipermeable surface (with a proper
orientation) through a given curve (= (n — 2)-dimensional manifold in &).
Let the latter be

Dz, =h(sy,...,5, ). 8.3.7)

* We shall always use the numerical subscript notation for the »,.

* The scope of the “in general” is like that in the familiar theory of first-order partial
differential equations. Any curve will serve as a proper seat of initial conditions if it is
nowhere tangent to a characteristic.

-
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We must first fit the »; to 9. Normality requires that
S vhy =0 (h”=aa—h‘), j=1...,n—2 (8.3.8)
i s,

and the ME; (8.3.3) is also to be satisfied on 2.
Thus we have n — 1 equations to determine the »,, One must note
whether the orientation of » fits the problem at hand, but otherwise the

length of » is arbitrary.
The following result is a sort of converse, showing that our construction

leads to a semipermeable surface.

THEOREM 8.3.1. Let ¢ and ¢ denote functions of the x; and »; which
furnish the min and max in (8.3.1). For a curve & given by (8.3.7) let 7,
be values of #, not all zero satisfying (8.3.8) and (8.3.3). Let z(7,sy,...,
S,_2) and (7, 8y, . . . , S,_p) be integrals of the differential equations (8.3.6)
with h; and #, as initial conditions. Then (7, 5y, . . . 5,_p) is the parametric
representation of a semipermeable surface which contams 2.

Proof. Let Q = Z V,f{X, &, %), and let us calculate Q, the (retrograde)
rate of change of Q along each path [as expressed by the z,(7)]:

é = 'Z:J}:"i + ?figl'

Now fi= g(ﬂj + .08 =— ;fé;fr
The dots stand for terms such as

9 9

0¢, Oz,

which, as discussed earlier, are all zero. The second equality results from
the first of (8.3.6). Thus the first sum of Q is

- Zfiﬂ'z'f ¥
iss

This is annulled by the second sum, if we replace %, by its value from
(8.3.6). Thus g equals zero. Because Q equals zero on &, it equals zero
on & and (8.3.1) is satisfied there.

Similarly, if

21’5 ax,
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then

) 0
ko= - 3n 2 3(su) &
Sk
and ° i} ’(xa’f ) = Z f“ + terms that = 0 as before.
%

This yields R,c equals zero after substitution and an interchange of i, j
in one of the two sums. Because R, equals zero on &, due to (8.3.8),
R, equals zero on .

These n — 1 equations and (8.3.3) holding on % imply that » is normal
to .. Then (8.3.1) implies that % is semipermeable. Obviously the points
of & with 7 = 0 form 2.

The proof also shows that

If ¢ and $ as determined from (8.3.1) are unique, there is a unique
solution for every essentially distinct », satisfying (8.3.8) and (8.3.3).

The semipermeable surface obtained by the foregoing procedure is
imbeddable in a neighboring family of such surfaces. It is only necessary
to imbed the curve 2 in a one-parameter family of nearby curves and use
each. The family will constitute a surface and it is, of course, necessary
that this surface is not tangent to &.

We have been assuming that & is smooth. The scope of our work can
be broadened to include various types of exceptions. The ideas are as in
our previous pages. For let & be imbedded in a family of semipermeable
surfaces. Let us select a smooth function F which is constant on each but
with a nonzero rate of change throughout the family. Clearly what we now
have is tantamount to the surfaces of constant Value (V' = F) of a terminal
payoff game. To it we may apply our earlier concepts of singular—
transition, universal, etc—surfaces. These are reflected as corresponding
singular curves on <.

Exercise 8.3.1. Given the KE

—-1<é< P
pass a semipermeable surface through the z,-axis (parameterized ; = 0,
2, =5, ¥, =0). Two are possible of opposite orientation; settle the
choice by assuming »; > 0 (one may take », = 1). We should have », <0
except on Z; why?

5 As long as #; < 0, it is not necessary to place bounds on ¥, as will appear from the
calculations.

LI
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[The solution is
x, = dsT — 478

xy = § — 27°
@y == 2572 — 7]
Exercise 8.3.2. For the KE
& = cos ¢
g =sin¢ + 2y, -1y

1. show analytically that the semipermeable surfaces are lines making a

30° angle with the vertical and find ¢ and . .
2. by drawing vectograms, demonstrate this result geometrically.

8.4. TERMINATION OF BARRIERS

It is quite possible for a semipermeable surface to come to an a.brupt
end, none of the paths being continuable beyond a certain curve in the

surface so that the latter remains semipermeable.
That this phenomenon can occur is shown by three examples:

Example 8.4.1. Let the KE be

i=¢(l—y)—(1-9
y=—cp+c—1, (c = aconstant; —1<$<1)

and we shall pass on semipermeable surface through (0, 0).
The ME is
min {96[1’1(1 — y) — voc] — (1 — y) + voc — 1)} =0

so that
=—0=—sgn[ ]= —sgn 4.

The RPE are ,
F=(o+DA—y, H=0

g=—(c+Dec+1, »=(+1n
As initial conditions we shall take »; =1, », =0, as well as z =0,
y = 0. Such is consistent, for here
A=11—-0—0c=1>0 andsoo = —1,§=1

and the ME is satisfied.
As the RPE here are

Lo Vo
1i
- L
=
>
i
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they have the integrals
z=0, v =1
=7, vy =0
and 4 =1—r.
Thus 4 > 0 until 7 = 1 and thus far the path is the vertical segment
extending from (0, 0) to (0, 1). Here 4 changes sign and a continuation
would have to have ¢ = +1, rendering the KE

2=21—y), =0

o

. (8.4.1)
y=1—20, 1)2=2v1

Now if ¢ > } then § = 1 — 2¢ < 0 and the new path, if there is such,
starts out downward, doubling back on the old. As the normal » does not
change at the junction, while the direction of traverse does, it follows that
the orientation changes, and there can be no semipermeable continuation.

On the other hand, if ¢ < %, the integrals of (8.4.1) present a perfectly
valid continuation of our vertical segment. It is, as the reader may easily
verify,

z = (1 — 2c)r®

=14+0—-2)r ¢

an arc of a parabola joining smoothly to the top of the vertical segment
and forming with it a valid semipermeable surface.
It is instructive to work

Exercise 8.4.1. By drawing vectograms etc. interpret the above example
geometrically.

A still simpler possibility is demonstrated by
Example 8.4.2. The KE being
Z=sin¢
g = cos ¢ — q(z, )

the vectograms appear as in Figure 8.4.1. If ¢ > 1, either of the over-
scored arrows (which one is a matter of orientation) are tangent to a
semipermeable surface, as all the other arrows lie on the same side of
these. On the other hand, if ¢ < 1, clearly none can exist locally.

Let g, a function of x, y, be >1 in part of the plane and <1 in a second
part. In the first part we can draw semipermeable surfaces. Should one
of these tend to enter the second part, it must immediately terminate.

¢ Not the old r; this one starts anew at the extension.

K
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Iy
L

g>1 g<l1
Figure 8.4.1

Exercise 8.4.2. By setting up the ME, RPE, etc., verify the preceding
conclusions analytically. Construct and solve a specific case.

Finally, we display a typical instance of a proper two-person game. It
will reappear later as a constituent of a broader matter in Chapter 10.

Example 8.4.3. Take & as the upper half-plane (y > 0) and let P have
the vectogram X4, 4, shown at (a) of Figure 8.4.2. The headline 4,4, is
vertical and its half height 4,4; or A4, is the constant b while the
horizontal component XA4; is u(y). The circular vectogram of constant
radius w belongs to E. The two velocities are additive so that the KE are

Z == u(y) + wsiny
y= —bd + wcosy, —1<€¢<1

Here u(y) is positive, smooth, and increasing for y > 0. For some y,,
w = u(y,) 50 that w > u in and only in the strip 0 < y < g,. Also b > w.

We will pass a semipermeable surface through the origin with the escape
zone lying to the left. We shall soon see that it appears as at (b) of the
figure, extending from O to a point B where « (= z) is positive and
¥y (=Yp) =Y

When y < ¥,, draw the circle of center 4, and radius w as shown at (c).
We will demonstrate that the tangent X7, drawn as shown to this circle is
the needed semipermeable direction at X. First let P play X4, (¢ = 1).
Then the resultant velocities at E’s disposal all begin at X and terminate
on the circle; clearly none penetrates XT;, in the direction of the arrow.
On the other hand, if E plays 4,T,, P can but choose velocity vectors
extending from X to T,T, (here A,T, is a translate of 4,7,) and none
penetrates in the reverse direction. Hence the semipermeability.

Now suppose ¥ > ¥, so that u > w. Then (see (d)) the line T1T, lies
on the same side of XT; as the circle and the semipermeability fails. In
fact, no such direction exists with the proper orientation.
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In the strip 0 < y < y, we have an XT, through each point X and so a
direction field. The classical theory of differential equations permits us to
draw a curve through 0 having the local XT, as tangent at each of its
points; its form is as at (b). Note that at B, the tangent is vertical, an
obvious conclusion from the vector diagram (c).

Problem 8.4.1. Treat this example analytically and corroborate the fore-
going results by the methods of Section 8.3.

Exercise 8.4.3. Show that the differential equation satisfied by the
barrier is for 0 < y < ¥,

d ——
(b — wd) d—; = wul(y) + b — w® — bu(y) (8.4.2)
¢==1
A1 e Tl A1 Al
w > T 7
b b
A
_37_
X¢—Y b'e
b b
17
Az\
é=+1
<~ u(y) | T, @
(@) © Az 4
w )
y
B
®
< x
4
Figure 8.4.2
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and obtain the barrier for the case’ where

b=3, w=2, u=y+ 1.

so that o = 1. . ‘ .
[(8.4.2) can be derived easily by observing that normality requires
dz _ _ %
dy "1

and the ratio on the right can be found directly from the ME,.]

8.5. CONSTRUCTION OF THE BARRIER

Our approach will be toward the delineation of the escape anq capture
zones, when both exist, by investigating the surface—the barrler——tpat
separates them. We know it must be semipermeable. In the last section
we saw how to construct such through a given curve. We now face the

roblem of ascertaining which curve. '

From (8.3.1) we see that the normal vector » to the b'arrlc}' shoyld
extend info the escape zone. We will always adopt this orientation
convention. o

In many important cases the barrier will meet € and the 1n.1t1a1 curve can
be taken as the intersection. This idea of taking P on¥isin acc01:d with
our general scheme of beginning on ¥ and working retrogressively into &.
That matters need not always be so is shown by

Example 8.5.1. We take as KE
% =cos¢ + ucosy
g =sin¢ + usiny

where u = u(x,y) is a continuous function enjoying the properties:
For y > 0, u > 0. Letting & bea smooth curve in the upper half-plane
(y > 0) which meets each vertical line exactly once. Above &, u>1;
on &, u=1; below &, u<1.

We take & to be the upper half-plane (where y > 0) and € to be the
x-axis.

Tt is clear that the velocity of x is vectorially the sum of two velocities, of
magnitudes # and 1, with their respective directions under con'frol f’f the
players. Clearly, also, above &, whereu > 1, E controls the d?rectlon of
motion and below &, P does. T hen & is the barrier. On it the two
velocities each have magnitude 1; the players pull agains.t one another,
oppositely on the normal to . Consequently, & is static. Clearly the
capture zone is the subset of below & and the escape is similarly above.

7 We will utilize this case later.
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Research Problem 8.5.1. The same as the last example except that a
constant C is added to the expression for #. If C is sufficiently small the
barrier can be expected to be near &. Is it still static?

From now on we assume 9 to lie on % and note three distinct possibilities.

1. Natural Barriers. Here 2 will be the boundary of the usable part.
In the light of the present subject it is instructive to review the latter
concept.

Let x be a point of € and let ¥ = (1, - - - , 7,,) be a nonzero vector at x,
normal to % and extending into &. The condition

min max 3 ,vfi(x, $, ¥) <0, x€% (8.5.1)
4 v i

expresses the fact that P can force X to penetrate € despite all opposition,
The subset of € for which (8.5.1) is true is the useable part (of ¥). If we
replace < by >, then E can frustrate penetration and such points con-
stitutes the nonuseable part. The delineation—the BUP—is characterized

b
y min max Y y,f(x, ¢, ) =0, x€%. (8.5.2)
¢ v i

For such points, when each player exerts his optimal endeavor x moves
(if at all) tangentially to %.

As the BUP separates the points on € (or rather a little away from
%) where immediate capture will ensue from those with immediate
escape, it seems logical to use the BUP as the initial curve 9 for the
barrier #.

To construct & we use for initial conditions: for x, the x of the BUP and
for v, we use y. As y is normal to %, and coincides with » where % meets
&, the two surfaces meet tangentially. An ideal prototype is sketched in
Figure 8.5!1a. The BUP here is depicted as a closed curve on %, the
useable part being its interior. The barrier meets it tangentially to % and
appears here as a trumpet shaped surface. It is the union of paths, whose
directions are shown by arrows which meet % tangentially at the BUP and,
as must be true generally, from the useable side.

Suppose now that & actually separates & into two parts. If x is in the
outer side—the one not contiguous to the useable part—then P cannot
compel capture. For he can force x neither through the semipermeable #
nor through % as only the nonuseable part is accessible.

To show that the inner side of # is the capture zone is harder to prove.
At (b) is shown a partial cross section of (a) of the figure, cutting the
latter at a path. Let % beimbedded in a one-sided family of semipermeable
surfaces as indicated by the dashed curves. These are assumed to bound
ever smaller subsets of & over the useable part. Now let x be on the inner

LI
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()]
Figure 8.5.1

side of %, as X, is in the figure; X, lies on a surface of the family. If E
plays a  germane to it, P will play #; x stays on the path which leads him
to and across ¥. If E plays otherwise, then P can force him to penetrate
through the family. This penetration is irreversible and—certainly in
many particular cases at least—x is drawn irrevocably to &.

Finally, let x be on . If ¢ and 9 are played, x traverses a path of &,
meets ¢ tangentially, and leaves it again (the dotted curve of (b)). Thus
the outcome is neutral.

A defection by either player will lead to a worsened payoff, that is,
either definite termination or escape. Thus here the optimal strategies of
both players are really optimal in the customary sense of this term. Such
is true nowhere else. For example, when outside of %, E need adhere to no
particular y. He can fix on some semipermeable surface neighboring %
on the outside and arbitrarily close to it and not act decisively unless x
reaches this surface.

We construct # by starting at the BUP and integrating the RPE
therefrom. The resulting surface may or may not divide & into two parts.
In the former case, these will be the sought escape and capture zones as
just shown.
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If & fails to subdivide &, then capture can always be attained by P.
But from starting points on the (in a local sense) two sides of & he must
adopt different tactics. The typical idea is sketched in Figure 8.5.2. From
X, we can expect rather a direct path to €. But from X;, P must force
(assuming perhaps some reasonable resistance from E) x to follow the
indirect path which skirts & to reach € at a point of the useable part.
An example is the swerve maneuver in the homicidal chauffeur game, and
there is a pristine one in the isotropic rocket game (see Figures 5.5.3, 5.5.4,
and 5.5.5).

All portions of # need not be relevant to the problem at hand. Should
Z# intersect itself, or consist of several parts which do, the portions
beyond the intersection are to be discarded. Thus in Figure 8.5.3a, we
reject the dashed parts of #; the capture zone is the shaded curvilinear
triangle. A beautiful instance of this, open to the most natural of inter-
pretations, appears in the homicidal chauffeur game, to be discussed in
Chapter 10.

Figure 8.5.3b depicts a discouraging possibility. Construction of the
retrograde paths from some points of the BUP such as P, may be quite
satisfactory. But from others the paths may dip below ¥ when near the
BUP and then rise above it, (P,) piercing the useable part at a point A.
Clearly such paths cannot fulfill the role we wish of them and must be
discarded. An instance in the isotropic rocket game was for long the most
frustrating problem encountered in the theory.

IL. Artificial Barriers. Suppose we have a first game for which € has a
useable part (which might be the whole of ¥). The ultimate game is
modified by adding the rule that termination must occur by x reaching %
at a point within some definite subset of this part; this subset being
bounded by a curve &. To construct the barrier of the latter game, we

\/UP\*/

Figure 8.5.2
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(b)

Figure 8.5.3

would begin by attempting to pass a semipermeable surface through 9,
Such is one type of what we mean by an artificial %.

Of course, the modification may not be naively stated as a curtailment
of € but may be a logical equivalent. Thus if € were comprised of several
analytic surfaces, & might lie at their intersections. A polygonal € is an
example, only one face of which turns out to be the useable part.

A pursuit game with several pursuers hunting a single evader furnishes
another instance. Another class restores the single pursuer but has the
evader constrained by certain boundaries or obstacles. We canimmediately
consider the surfaces delineating these as additional surfaces of termination,
regarding a transgression by x as tantamount to capture.

In all of these cases we begin by passing a semipermeable surface
through 2 according to the methods of Section 8.3. Most of the pre-
ceding ideas of this section hold with evident modifications.

III. Envelope Barriers. Let G be a differential game with n > 3 and
with a nonempty, nonuseable part of ¥. The initial curve ((n — 2) mani-
fold) £ for this type of barrier lies in this part. The optimal paths
emanating from 2 meet 2 tangentially (hence the term envelope barrier),
and the optimal strategies on the barrier are extendable continuously onto
9. Thus when x follows an optimal path to %, it can continue its motion,
with both strategies continuous, and travel on 2.
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Naturally only special & are eligible for the role and they do not exist
in every game. Let x be in the nonuseable part. For any ¢, then, E can
find a y causing penetration into &; let us suppose he can also find a
y = P = (X, ) which keeps x on ¥, that s, its velocity is tangent to &.
Then when E plays %, we have a one-player subgame G, whose & is
(part of) the nonuseable part of G. The essential requirement on 9 is that
it be a semipermeable surface of G,.

We shall elucidate this in a theorem and then explain the role such
surfaces play as barriers.

THEOREM 8.5.1. Leét G be differential game with » > 3, for which the
following is true:

1. There is a region Z of the closed nonuseable part such that for any
¢8 and x € 2, there is a value 9(¢) (== 9(x, ¢)) of v, which is continuous
in (x, ¢), such that when ¢ and ¢(¢) are played the resulting velocity
vector does not penetrate €. If more than one ¥.is possible, we select
some definite one. :

2. In the one-player game, G; which has the KE

x = f(x, ¢, 9(¢))

and playing space Z, there is a semipermeable surface which we denote
by 2.

y3. In a neighborhood of &, the optimal control variables are locally
continuous with o locally unique. Explicitly these properties mean:
For any fixed pair x of & and » a normal to & there, we can select the

i

minimizing $ of 04, v) = 3 fix, 6, 9)
s0 as to be continuous in x and » in some neighborhood of the above fixed
pair. For a definite ¢, the corresponding maximizing y is a uniquely
determined function of these variables and similarly continuous.

4. A semipermeable surface, &, can be constructed in the standard
way (Section 8.3) with 2 as initial curve.

Then & can be constructed so that its constituent optimal paths meet
2 tangentially and the values of the optimal ¢ and y for & agree with
those of & at Z N &.

Proof. We choose coordinates so that % is in the plane: x, = 0 with
€ on the side with #, > 0. Then for x € #Z and all ¢

fix, ¢, 9(4)) = 0. (8.5.3)
Let ¥ = (0, »,, ..., ¥,) be the normal vector in & to 2.

* It is always understood that we deal only with admissible ¢ and %, that is, all
constraints specified in the rules are always assumed satisfied.
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By putting
0, v) = 54x 4, )
the semipermeable condition applied to & is
min 0,($, #(#) = 0 = (4, HP) (8.5.4)

where Js’ = qf(x) supplies the min and x € 9.
The normal vector to 2 in &, to be used as initial value for &, is
(1, ¥g5 - -+ » ¥,,) for some »;. By putting

(¢, v) = V]f1(xy &, 9) + O:(d, v
the semipermeable condition for & at 2 is
min max Q(¢, ¥) = 0 = Q($, ¥). (8.5.5)
From (8.5.5) Y
08, 9P <$p =0
and from (8.5.4)  Ou($, %) > Qu(4, ¥#($)=0

If at least one of these inequalities were strict, we would have

11f1(%, $, W) = O, ¥(P) — Qu(, () < 0

contradicting (8.5.3).
Therefore, both of (8.5.6) are equalities. From the second, when we

(8.5.6)

construct &, we can use ¢ in place of ¢, as hypothesis 3 justifies. From
the first, and again from 3, the ¢($) on 2 agrees with % on <. The
optimal strategies for & and 2 are equal at their juncture. Because this
implies that the #; are also equal there, we have the stipulated tangency.

Remarks. 1f more than one optimizing ¢ or y is possible at 2, we may be
able to construct more than one semipermeable surface through &. Only
one, &, of this necessarily discrete set can have the continuous junction
just exhibited.

If more than one ¥ is possible there will be an & for each. The proper
choice of p is dictated by the exigencies of the particular problem as will
be seen in the examples of Chapter 9.

The hypothesis 3 is necessary. We can utilize Exercise 8.3.1 as a
counterexample (we adjoin —2 and 2 as bounds for ). It is clear that we
may take ¢ as —\/:t—z. Calculation, with »3 = 1, yields for Z: z, =0,
0<z,<1, 3=0. But the reader who has solved the exercise will
know that on &, = #,/, and that this ratio approaches 0 as we near &.
This discontinuity in the optimal v precludes tangency of the paths to
2 and the conclusion of the theorem is untrue.
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Observe that & with its boundary 2 together constitute a semipermeable
surface.

COROLLARY 8.5.1. If 2 meets the BUP, the optimal paths of 2 meet it
tangentially.
Proof. In the coordinates of the last proof, if x € BUP then

min maxfl(x, ¢s '/") =0
o v

and let ¢ and 9 now supply the minimax here. By 3. we may suppose
(after choosing a ““branch,” if necessary) them unique near a juncture of

9 and the BUP. At a point X of this juncture ¢ and % must thus be ¢ and
#P)-

Near K on the BUP we then have definite §(x) and #(x). If they are used
as control variables, then x must traverse a path in the BUP. The velocity
vector (0, &, . .. , €,) of this path at K is the same as that of & there, as the
control variables agree. Hence tangency.

How are such & to serve as the barrier of G? First £ must meet the
BUP. Then if x starts from &, under optimal play it first traverses its path
in &, then one in & until it reaches the BUP. Here we may expect that x
will escape into ¢ in the manner (the dotted curve) of Figure 8.5.1b.
Thus until escape x has remained on a semipermeable surface and the
outcome is neutral.

By virtue of Corollary 8.5.1, 2 and the BUP have a common normal »
when they meet. Thus the paths constituting & must blend smoothly into
those of the natural barrier. In such a case, then, the natural and envelope
batriers together constitute one composite barrier.

Observe that at a point of the juncture, the mutual optimal path, as one
of &, is tangent to 2 and so by the corollary tangent to the BUP. Thus
only through points of a natural barrier at which the barrier paths are
tangent to the BUP is it possible to construct a .

Due to this latter tangency it may well be that envelope barriers are the
remedy to the disconcerting phenomenon depicted in Figure 8.5.3b. We
know this is so in one case.?

Research Problem 8.5.2. In Figure 8.5.3b, let K be the point on the BUP
which delineates the paths that dip under from those that do not. Is it
generally possible to pass a & through K and construct an envelope
barrier which takes over from the valid paths of the natural barrier?

There is one last but important difficulty. When x is on 2 (which € %)

% The isotropic rocket (Example 9.3).

i
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it may be quite possible for P to cause penetration of €. In the language of
the theorem’s proof, P has a determined optimal 9;10 when X is traversing

2. But this 5 may not be the minimizing one for fi(x, ¢, ¥). Then
penetration certainly can be forced.
Further insight requires

COROLLARY 8.5.2. Suppose  actually separates the escape and capture
zones of G. If there is a value ¢,11, of ¢ such that, for x € 2

fi%, d1, Y($) < 0

then there is a value y, of y such that, when ¢,, v, are played, x will
penetrate both € and & into the escape zone.

Proof. As ¢, is not optimal for the semipermeable surface, the use of
¥($,) by E will cause x to penetrate 2 and such must be toward the escape
side. The velocity x arising, being of G, is tangent to €. As 2 is in the
nonuseable part, E will certainly have a g, which leads to penetration of €
into & when opposed by ¢,. By the Convexity Assumption (Section 2.7)
any convex linear combination of ¢(¢,) and y, will be in E’s vectogram.
If he chooses one with the lion’s share of the former and sufficiently small
coeflicient for the latter, the resultant y, will have the properties stated.

Thus, should P attempt a capture with ¢, while x is on 2, E can retaliate
by escaping with u,. But this seems to require decisions based on the
opponent’s control variable, in violation of the definition of a strategy.
Technically we can reply that definite ¢ and # exist at all points of the
barrier; if the players navigate with them there is no hitch.

Put practically, E must have some foil for the above nonoptimal capture
threat. Let him play in accordance a %, replacing ¥ as described in the
““assuagement” near the end of Section 8.2. He responds, should P pull x
beneath €,, but before, say, it reaches %.2- The simplest way seems to
permit the above violation, our excuse being the short duration of the
lapse. He meets ¢, with y, and, with a small enough &, gets into the
escape zone in a very short time.

Very likely this defect can be ameliorated, but the small interim of the
unorthodoxy seems to occasion little practical difficulty In some cases at
least, Ecould act as if ¢, were extreme (minimizes f;) and define a responsive
strategy by defining  as the y,, countering this extreme ¢ for x in a lamina
below %,.

10 Possibly a vacuous statement, for f; may be independent of ¢. Then, of course,
there is no possible penetration and no difficulty.
11 Subscripts, in this proof, do not mean components.
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8.6. SOME BRIEF EXAMPLES

Example 8.6.1. Interception of a straight flying evader. Here P moves in
the plane with simple motion and unit speed, while £ is bound to a line
(say, the z-axis), moves with speed w, and merely can select for his strategy
one of the two possible directions of travel. Capture occurs when |PE| < I,

In view of P’s unquestioned ability to capture when w < 1, this case is
trivial. Our interest is in the conditions which make possible the success of
a slower pursuer (w > 1).

Thg ideas here, although possibly not this very simple exemplification,
pertain to a practically important question: When can an interceptor be
successful against a faster attacking craft which travels a fixed straight
course? The latter might be a ballistic missile with no provision for
evasive maneuver or an attacking aircraft whose speed or plan permits
little or no such.

As we shall see shortly, this problem is very simple. We give the full
formal solution to illustrate our context.

Let coordinates be as in Figure 8.6.1a so that the KE are

&= wy —sin ¢
J= —cos¢

where —1 < y < 1 (preferable toy = +1).

< <
&y
&

()
Figure 8.6.1

ko
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Figure 8.6.2

The ME, is
min max [—(», sin ¢ + v, cos @) + wrp] =0
¢ ]

and so sin § = »,/p, cos § = »,/p with p = +/»,? + 7,2 and

P =0 =sgny.
Thus the ME, is
—p+wrnoe=0
and the RPE
&= —wo+2, V=V =0
P
=",
P
Capture occurs ((b) of the figure) when
x=1Isins
y = lcoss.

In the reduced space we have the semicircle of Figure 8.6.2 as 4. We prefer
to consider only y > 0. The useable part is defined by (note the vectograms
sketched and that », the normal, = (sin s, cos s5))

min max [—(sin ¢ sin s + cos ¢ cos s) + wy sins] <0
[ 2
or —1 4+ wlsins] <0
. 1
or Isin s] < ; .
Thatis, if Sis defined by sin S = 1/w,0 < S < 7/2, then the useable part of

% is .
—S € s< S (the heavy arc in the figure)
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and so the BUP is given by

s =0S. (recall o = sgn ).
Thus the initial conditions are

z = olsin S, ¥y =osin S
y= lIcos S Yy= cosS.
The path integrals (of the RPE) are quickly obtained:
z=o[(/ + 7)sin § — wr)

¥y= (I + 71)cos S.
The slope here is
cos S
sin S — w
which, because sin § = 1/w, is equal to
sin S
—0
cos S

and hence the barriers are tangent to % at the points where s = ¢S. We
curtail them at their intersection (if w > 1). Thus we reach the result that
the capture zone is the shaded region of Figure 8.6.2.

The formal work could have been shortened. By observing that « and
do not appear on the right in the KE, we infer that ¥; = 0 and then that
the barriers must be straight. Hence, as soon as we know the useable part,
we can draw the properly directed tangents from its endpoints at once.

Note that if w = 1, the barriers do not meet. In this case, the capture
zone is the strip

2. <1

The barriers are the lines # = 4/ and are static.

Problem 8.6.1. Confirm the above results geometrically when w > 1.
Problem 8.6.2. Discuss the “realistic” significance of the result when
w=1,

To treat the interception problem mentioned earlier, we merely deprive
E of his ability to change his direction of motion. Only one barrier now
appears and the situation is shown in Figure 8.6.3.

Example 8.6.2. Dresher’s one chance pursuit game. We reconsider
Example 6.6.1, but we will generalize slightly by permitting motion with
arbitrary speeds. Letting the vectograms be as Figure 8.6.4a, and « and y

LY
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¥
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Figure 8.6.3

being the components of the vector PE, the KE are
t=wyp+ ¢
g=—-w+1), wsl

Capture as usual means 22 + 2 < I%. In the reduced space ¥ is para-
meterized by s as in Figure 8.6.2 except now we admit the full circle
instead of the upper half. The useable part is identified by

min max [(wy + ¢)sins — (w + 1) cos 5]
¢
Y =ogw—1)sins —(w+ 1)coss <0

W

P

w>1 w<l
()
Figure 8.6.4
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where ¢ = sgn sin 5. Thus the critical angle S, connoting the BUP
satisfies

w1

w—1"

tan S =

We can employ the short-cut of the previous example: the right sides of
the KE, being free of # and y, lead to straight barriers. They appear as in

(b) of Figure 8.6.4.
In the case treated in Example 6.6.1, w = 1 and the barriers then appear

vertical and parallel.

Example 8.6.3. A synthetic problem. Using the KE of Exercise 8.3.1, take
& as 3 > 0 and € as x; = 0. The useable part is decided by

min &g =min(—2z, + 1 — ¢) = —z, <0
¢ ¢

or z; > 0. The BUP is thus the &, the x,-axis of Exercise 8.3.1, and we
refer to the solution obtained there:
x; = 4s7 — 478
xy =5 — 27° 8.6.1)
xy = 257% — 74,
For s < 0, observe that z; < 0 for small positive = and thus these paths
cannot form part of the barrier. We thus suppose that s > 0.
When 7 = +/2s, the path pertaining to s returns to z3 = 0 and it meets
this plane on the curve ~
2 = —4/2
z, = —3s, 0K s < .

Given any z; > 0 and__ x5, we shall show that there exists uniquely s, =
with s> 0,0 < 7 < /25 such that the last two of (8.6.1) are satisfied.
Thus the barrier meets every parallel in & to the ;-axis exactly once and

so divides & into two parts.
The proof involves merely some routine elementary algebra. Solving
the last two of (8.6.1) for s and 7 yields for the latter

2==% i\/xzz'*‘ 3%_
3
By choosing &= = 4 we get just one possible positive 7. Then

s=z,+ 272> 0.

From
23 = (25 — )77
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follows that -
T < \/ 2s.

Example 8.6.4. The dolichobrachistochrone. We have seen in Example 5.2
that for starting points low in the plane—when y < w2—E can prevent
termination despite all efforts of P. Thus the line ¥ = w? appears to be a
barrier. Like a natural barrier it is a semi-
permeable surface through the BUP, but it is
not tangent to €. This exceptional behavior
is caused by the barrier’s being static.

Exercise 8.6.1. Prove that line y = w? is
actually semipermeable, static, and properly
oriented.

Problem 8.6.3. Show that above this line
(¥ > w?) no semipermeable sutface exists.
Show that below it two pass through each
point. This can be easily done geometrically
as suggested by Figure 8.6.5. Finally, explain
why the juncture of the transition surface and BUP confounds the tangency
of € and #.

Figure 8.6.5

8.7. POSSIBLE OTHER SPECIES OF BARRIERS

Our classification of barriers arose from an exploration of methodology
and does not attempt exhaustion. That still further varieties may arise is
indicated by

Example 8.7.1. A further type of barrier. In this planar one-player game

the KE are
Z=wcosp

g =wsinp — u(x)
where u(x) is a smooth function enjoying the properties:
u(z) > 0 and u'(x) < O for all .
u(0) = w.

It follows u(x) > w when < 0 and u(x) < w when z > 0.
For € we take the line through the origin

z =y, y=os

where « is a fixed number of either sign; & lies above €.
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We are going to state some results, leaving the proofs to
i ’ th ,
Let 4 be the point of € (see Figure 8.7.1a) such that © reader

Vir(d) = wAw = o

so that s < 0. The useable part of € lies to the left of 4 regardless of the
sign of a.
When 2 < 0 the family & of curves which are the integrals of

are semipermeable. (They are sketched at (a) of the figure.)

When a < 0, one member # of F will be tangent to € at 4. It con-
stitutes a perfectly normal natural barrier (see (b) of the figure).

But when « > 0, the barrier & is that member of # which passes
through the origin O (see (c)). It is not tangent to % and meets it at the
nonuseable part. For starting points just above 40, such as the X shown,
capture does not occur immediately, but X follows a route as indicated to
the useable part.

Exercise 8.7.1. Attain these conclusions analytically.

(@) (@ <0)
Yy
B
CZ\EZ @
X
x
x
@ /T
T\ -

®) ©

Figure 8.7.1
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8.8. FUSION OF GAMES OF KIND AND DEGREE

We have already discussed one aspect of this.quest.io'n in an early
chapter. In a pursuit game, when the starting position is in the capture
zone, P might adopt the attitude: “As I can capture, 1 s,I,lall do so as
efficiently as possible and (say) minimize the time it takes.” If E corre-
spondingly seeks to maximize, we have a composite game of kind and
degree. ‘

But there is a second possibility of fusing the two kinds of games. For
x in the escape zone, P might say, “I cannot attain capture, but I will co,r,ne
as close to it as I can; I shall (say) minimize my closc:st'dls‘tancem to E18

In both aspects there arises the question of the §im11ar1ty betweeg the
optimal strategies (for both players) of degree and kind. The lat.ter will be
defined on the barrier; the former in a half-neighborhood of it at least,
The two ¢ (x) [#(x)] thus defined can be regarded as one .functlon on the
closure of the half-neighborhood. If this function is continuous, the two
types of strategies can be said to fuse continuously with one another.

Whether or not there occurs this fusion is closely related to another
matter, also of interest in its own right:

THE ENVELOPE PRINCIPLE. If a pursuit game is solved with tirpe of
capture as the payoff, the envelope of the surfaces of constant V' is the
barrier.

A beautiful instance of the principle’s holding is depicte(‘i in .Fi.gure
5.5.4, where the envelope of the circular arcs of constant V is strlk'n?gly
visible and does constitute a cross section of the barrier. In the homicidal
chauffeur game, the principle holds for small ¥, but fails for larger, as we
shall learn in Chapter 10. o

Lack of space necessitates postponement of publication of our researches
into these questions.

12 The mean distance is another possibility.

13 He may be mentally adding, “Who knows? That fool of an E may not play
optimally and I'll still get him.”

CHAPTER 9

Examples of Games of Kind

The ideas of the preceding chapter are applied to a number of examples.
The homicidal chauffeur game and its smoother counterpart, the isotropic
rocket, are both solved in full. The game of two cars (Section 9.2)
illustrates the complexities that may be submerged in apparently innocent
problems. Its ideas here prove to be of practical importance in their
similarity to those of collision avoidance.

What we have called the lifeline and deadline games are a pair with the
same kinematic background and apparently analogous content. But
their solutions exhibit a remarkable distinction.

The former game is a skeletal prototype of an evading craft trying to
reach the (straight) boundary of large target area prior to capture by a
faster intercepter.

A naval interceptor (torpedo, ship, etc.) trying to nail a faster evader
with a shoreline at its back is a broad instance of the deadline game.

Variations of this game (Section 9.6) are rich in basic applications
which, although simple in principle, are deceptively complex of solution.
In the one-sided version the evader strives to pass between shoreline and
pursuer. This leads to the cornered rat and corridor games. In the former,
say, the evader is trapped in a “bay” and endeavors to slip past the pursuer
hovering near its mouth. Still retaining naval terms, the latter game has
the evader trying to slip past a pursuer in a channel or river (or it might be
a football player passing a single tackler). We obtain the important

critical channel width.
This quantity also applies to the spacing of a patrol line of craft en-
deavoring to frustrate passage of a faster evader. A similar idea governs a

231
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circular patrol line secking to prevent the escape of a centrally located and
faster evader.

In Section 9.7 we offer some suggestions as the applicability of our
ideas to von Neumann’s general bounded pursuit games.

We conclude by exhibiting but not exemplifying a method of solving
dogfight (such as between aircraft with nonaimable weapons) games.

There is also a strong possibility of applying these ideas to the theory of
stability, but details, we feel, lie outside our compass. Such are sketched in
the final section.

9.1 THE HOMICIDAL CHAUFFEUR GAME

We shall now investigate the conditions under which the more agile but
slower E can avoid being run over by the faster but curvature-bound P.

The variables, already discussed, are indicated in Figure 9.1.1. Again
we encounter the KE

. w .
x=—§4y¢+w2smw

y=%x¢_w1+w2cosw, -1<4<1

which lead to the ME;:

min max
¢ v

If we put

l— W_I; [yvy — @v.l$ — Wiy, + wa(vysin p + »; cos 'P)} = 0.

A= yy, — v,

. Figure 9.1.1

! In much of this chapter, sections and examples will coincide.
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©.1]

then d=sgnd=g¢

and if p =/t + vl

then cos P = Y2 sinzp:v—1
P p

so that the ME, is

w1
—0— A — ww wep = 0.
R Vs + Wap

The RPE are found to be

© 'Vl fed
T =CYy — wy—, V; = CVy
P
] 72 o
Y= —Cx+ W — W=, Yy = —C¥;
P

where

Turning now to the initial conditions, % is defined by

z = Isins, y=Ilcoss
and the outward normal y by
Y1 = sin s, Y2 = COS S.

Thus the useable part is decided by

m:n max [y,% + ¥,y] = min max [sin s(— %‘ (I cos s)¢ + w, sin 1p)
L4

+ cos s(% (Isin 5)¢ — w, + w, cos w):l

max [—w, cos s + w, cos(y — )]
L4

wy — wycoss < 0.
Defining S by

w
cos § = =2
Wi

0<s<3,
the useable part is thus specified by
Isl < S

and its boundary, the BUP, by s = +£S.
We note that on €

A= (lcoss)sins — (Isins)coss =0

LR
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so that we look to A, which is (in all of & as well)
A= y(evy) — x(— cv) + vl(—cx + w; — w, 1;_2) - vz(cy — Wy 23)
P P
= Wl'l'l. (9.1.1)

Thus, on %, o = sgnv, = sgns. We will work with the right barrier,
taking
o=1.

The left-hand side is, of course, fully symmetric. The initial conditions
used for the integration of the RPE are thus

z=1sinS
y=1lcosS= 122
Wy
p, =sin S
y, = cos S.
Integrating the last two RPE gives
v, = sin (S + )
vg=cos(S+cr), c¢= % 012
so that the first two are
Z=c —w, sin (S + ¢
- asin ( ) (9.1.3)
§ = —cx + w, —wycos (S + c7)
which have, as may be readily checked, the integrals
2= (I — wyr)sin(S + ¢r) + R(1 —cosc¢
( 27) 8in ( 7) + R( 7) 9.1

y=(—wyr)cos(S+ecm)+ R sin c7.

Let us define the circles 2, and X _ as being concentric with the
minimal turning circles and having radii in the speed ratio to them. That
is, o, has center at (R, 0) and radius (wy/w))R.

The barrier is the involute of &', which is tangent to % as shown in
Figure 9.1.2a for (9.1.4) are the equations of just this curve.?

We have, either directly or by integrating (9.1.1)
A = Rlcos S — cos (S + ¢7)]

so that, on %, A ceases to be positive when S + ¢7 = 27 — S. Here,
from (9.1.2), the normal to the curve is (—sin S, cos S). It is not hard to
see that this normal must lie along the line OB, which is the lower tangent

2In Chapter 10 we shall rediscover this involute by purely geometric methods.

(1] 235

from the origin to X¢",. If we attempted to prolong & further, we would
have to change o to —1. The extension would have to be ar: arc of an
involute of ¢ _; everything jibes here, for clearly the normal OB is
tangent to both A . and A _. But the new involute would have to unwind
counterclockwise from 2#"_ and there would result a doubling back of %
an absurdity. Therefore # terminates, and the full (right hand) barrier i;
:ihe arc of the involute extending from C to B, which is overscored in the
gure.

There is, of course, a symmetric curve on the left. The two may or may
not meet, depending on the parameters, as shown in (c) and (b) of Figure
9.1.2. In the latter case ((b)), € is not divided into two parts by %, and

THE HOMICIDAL CHAUFFEUR GAME

e

(a)

(c)

e ————
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y

3
(Y
///

Figure 9.1.3

consequently all of & is the capture zone. That is, P can always qchieve
capture. From starting points such as X, E can force P into employing the
devious route shown around #; such is what happens under a swerve
(Section 1.5). Thus £, although it does not delineate capture and escape,
does demarcate the starting points from which optimal play will entail a
swerve.

When the involutes meet as at (c), we erase the parts of them beyond
their intersection. The shaded curvilinear triangle is the capture zone; all
the exterior region is the escape. We interpret the situatipn heuristic.ally.
Suppose the parameters are very much in E’s f.avor, that is, P’s margin of
speed is not great, / is small, and the turning radius large. T he most r_1atura1
way for E to avoid being hit in such circumstances is s'u_nply to sxdeste?
whenever capture seems imminent. From a starting position S}lch as Y, it
matters not what E does immediately. We can think of him as, say,
remaining stationary. An attempted hit by P will bring x downwgrd from

Y; Eisnot obliged to act until x is near 2, when he sidesteps. This would,
most naturally, mean that x traverses an involute near and e)‘(ternal to .@
as shown at (). He has sidestepped; the imminent danger is past until
P aligns himself for a second pass at E, whence the same type of t!nng recurs.

The shaded capture zone consists of those positions where E is placed s0
closely in front of the advancing P that, despite the former’s kinematic
advantages, he cannot sidestep. As it is conﬁneq to a bounded set of
starting points, while the escape zone is a set of mﬁmte_ extent, we feel
justified stating that whether or not the involutes meet is essentially the
criterion for capture or escape. o

With the aid of Figure 9.1.3 (equate the doubly drawn lengths), it is
an elementary matter to write an analytic criterion. If y = the speed
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ratio = wy/w; < 1, then capture occurs if

! —_
2> V1= 92 4sin™Y — 1 (9.1.4)

and escape if this inequality is reversed.
For capture regions of other, even asymmetric, shapes than circular,

the same type of criterion applies: whether or not the contacting involutes
of A, and X" _ meet.3

9.1A. DOGFIGHTING A HIGHLY MOBILE TARGET

For a craft, such as a single seater airplane with fixed machine guns, let
the lethal area covered by the guns be of a form such as is sketched in
Figure 9.1.4. Their fixed orientation relative to the craft, together with
some stricture on motion such as bounded curvature; causes their
effectiveness to be greatly dependent on maneuver.

We can take the aircraft as P in the foregoing game, with the lethal
area as capture region, and E the target. We could
learn, say, how fast the target must be in order to be
able to remain out of gun range.

This problem will usually be of greatest interest
when E has a speed greater than P and such neces-
sitates extending the foregoing analysis.

9.2. THE GAME OF TWO CARS

In this and the following section we take up two
problems of the same type as, but more difficult than,
the homicidal chauffeur game. The present one leads
to an analysis so formidable that we must be content P
with a solution complete in principle, but not fully Figure 9.1.4
displayed. Of course, any particular case—an in-
dividual set of parameter values—could be computed to completion.
The two car game was the subject of Example 8.1.1. It is just like the
homicidal chauffeur except the evader too suffers the constraint of bounded
curvature. Let wy and w, be the speeds of P and E and R, and R, their
respective minimal radii of curvature. The dimensionality of the reduced
space is 3, and there are many ways of selecting coordinates. We have
chosen z, y, 0 as clarified by Figure 9.2.1. These appear to be practical
from the standpoint of handling the somewhat oppressive differential

* For sufficiently large regions, of course, no barriers will exist. For example of the
capture circle contains ", and »#_. Then all of € is the capture zone.

.
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Centers of
curvature

Figure 9.2.1

equations as well as being similar enough to the homicidal chauffeur game
to employ generalizations. Figure 9.2.2 depicts &, the reduced space; it is
exterior to the cylinder of radius /. Of course, 0 is toroidal; it extends from
0to 2, and the planes of these two values are to be thought of as coinciding,
It is not hard to write the KE:
&= — _v_v_1y¢+ w, sin 0
R,
. Wi
g =2z — w, + wycos @
R, .

b=—2t4+2ty, —1<hy<l
2

R,
Let us put
A='vly'—‘l’ax+"'s-
The ME, is then
min max [_ ¢ 1 4 + wylyy sin 0 + v, cos 6) + -2 Va¥ = wl‘b’z] =0
¢ v R, R,
Thus
$ =0, = Sgn A
»(p = 0, = SgN ;.

The RPE are found by our usual methods. To abbreviate we put

c= Oy

2 F
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the RPE being
o
.'::= ¢y — wysin 0, by = cy,
Y= —cx 4+ w; — wycos 0, Yy = —cy
f=c— 22 O3, Vg = Wy( i
R, 3 2(v1 COs 0 — v, sin 6).
We can also calculate that
A= Wy, 09.2.1
We now turn to the initial conditions. We parametrize € by
z = [sin s,
y=Ilcoss
0=s,

as shown in Figure 9.2.2. If r2 = 2% + 42 we have from the KE
If = 2% + yij = 2(w, sin 0) + y(—w, + w, cos 0)
which on % becomes
IF = Isin s,(w, sin 5,) — I cos 5:(wy — w, cos 5).

Putting W = w2 + W,y — 2wy wy cos 5,

we see that the boundary of the useable part (where 7 = 0) is given by

. _ , Wy — WCOS 5. i
sins; = 4+ _Tz’ cos s, =4 2251 S (9:2.2)

Figure 9.2.2

%
v
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The + means that, on each section of ¥ where 0 = s, = constant, the
BUP consists of a pair of diametrically opposite points.

We now must make a distinction as to whether w; > w, or the reverse.
In the former case, we see from (9.2.2) that sin s; never changes sign. Thus
the two BUP remain more or less on opposite sides of € and the use-
able part roughly spans the upper half of €. Such is crudely shown in
Figure 9.2.2. On the other hand, if w; < w,, the sign change in s, (when
€Os §; = wy/w;) means that the useable spirals around %. '

Exercise 9.2.1. By means of vector diagrams interpret these conclusions
geometrically.

To save space we shall treat only the case where w; > w, in detail.
To ascertain ¢ and ¢ at the outset, we must look to 4 and »; on the BUP,
As here

. Wy — W, COS S
v, =sins = £ +—2——"2
w
w, sin s,
Yy = COS §; = & —2——2
W

V3 = 0
we see readily that 4 = »; = 0 on the BUP. Thus the criteria are the

signs of 4 and %,
Hence from (9.2.1)

g, = sgn A= sgn »; = sgn (;l: tﬂ;—m) (9.23)

= (assuming w; > wy) + 1.
Thus ¢; = +1 throughout the right-hand BUP. By symmetry we may
work with this alone and from now on take 6, = 1 and 4+ = +.

From the RPE

0y = sgn ¥, = sgn (v, cos 6 — v, sin 0) ©0.2.4)
= sgn [w; cos 53 — wyl.

This changes sign, again supposing w; > w,. Let S be the angle in the
first quadrant such that

w.
cos S = ~2,
Wy

Therefore, in the intervals of s, below, g, has the values:
Oto S, gy=1
Sto2w — S, gy = —1
27 — S to 2w, gy, = 1.
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Let us glance at the RPE. Clearly £ and 3 do not depend on o, but 6
does and so changes abruptly when s, = S and 27 — S. As s, increases
through S, fsuffers a sudden increase. This means that the paths from
5, = S— and s, = S+ diverge from one another. We have a void, and it
must be filled by a universal curve and its tributary paths.

At 27 — S, on the other hand, 6 suddenly decreases; the surfaces
formed by the paths from either side of 27 — S will intersect. They must
be curtailed where they do so and here will be a dispersal curve. Note that
as ¢ = 1 throughout this right-hand barrier, no instantaneous mixed strat-
egy is necessary.

Let us turn our attention to the universal curve. As it is a 9-UC, in the
notation of Chapter 7, we write the «, and §, from the KE and compute
the y;:

i oy B Yi

1 0 —cy + wysinf  (—w, cos O)w,/R,
2 0 cx—w +wycosl (wysin O)wy/R,
3 wy/R, —c 0

Suppressing the factors w,/R, and w,?[R,, the determinant is
c(—ysinb + xcos ) — wycos 6 + wy = 0. (9.2.5)
Which curve on this surface? Differentiate (9.2.5) with respect to T,

and use the RPE (with ¢ replacing o,) to find the navigable paths which
should comprise the surface.

0 = c[—gsin 6 + 2 cos 0] + [¢(—y cos 6 — z sin 6) + w, sin 0]6O
= c[c(y cos 6 + « sin §) — w, sin 0] + [as above](c — ;—2 1‘/5)

2
= [c(y cos 6 + = sin 6) — w, sin 6] 1!;.2 ¥.
2
Thus either p = 0 or the [ ] =0. The latter implies, together with

9.2.5), cx — wy + wycos 6 = 0

cy — wysin § = 0,
These two equations belong to a curve in & on which, as we see from the
RPE, z = § = 0. Such a static configuration hardly suits our end.
Therefore we take 9 = 0. Turning again to the RPE we have, after
replacing ¢, by I and g, by 0,
% = cy — Wy sin 0
Y= —cx + w; — wycos 0

o

Do

= (.

EY
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From the third equation 6 = S 4+ ¢r. Making this replac;ment in'the
first two, we sec that they agree exactly with (9.1.3), the barrier equations
of the homicidal chauffeur problem. Thus the projection of our universal
curve on the z, y-plane is the involute barrier of that problem. .

This conclusion is quite harmonious with our general conception of a
universal surface. It means that E, when playing the optimal neutral
strategy, executes a sharp left or right turn until his orientation is suitable
for him to play just as in the homicidal chauffeur game. N

We have not yet integrated the RPE. Doing so, withthe 1n1t1al'cond1t10ns
for x; and »; already found, we obtain the result below, which can be
readily checked. We retain o, and o, so that these paths fit all aspects of
our problem.

z = I'sin (s, + ¢7) + R,0,(1 — cos er) + Ryo,(cos (s, + cr) — cos §)

y=1 gos (51 + ¢7) + Ry, sin c7 — R,0y(sin (s; + ¢7) — sin 0) (9.2.6)

vy = sin (5; + ¢7)
vy = cos (s; + c¢7)
we
vs = R,y0, [cos (5, — s5) — coOs (sl — s+ . 62‘1')].
2
In the above it is understood that s, is to be replaced by its value (9.2.2).
We adjoin to the above
A = R,04(cos s, — cos (s; + ¢7)).

We are interested in the smallest positive 7, called 7, and 7,3, which
annul 4 and »,. Without bothering with details we presume that the
smaller of such = marks the termination of the barrier. We have

ri= R —s) i o= +1
W
=R if a=—1

Wy

re =R —(5y = 52))  if o= +1
w

2

=Ry —s)  if o= -1
Wy
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Figure 9.2.3 is a very crude attempt to indicate in part the appearance
of the right barrier. The left one will be similar; note that on it, the
dispersal curve (DC) emerges from 8§y = 2 — S and the universal (UC)
from s3 = S, and that the former curve moves toward rather than away
from the plane of 8 = 0.

The escape criterion is the meeting of these two surfaces and their
bounding, together with the useable part of €, a portion of &. But how
can we tell if such happens? It seems a formidable computation indeed.

Even the calculation of the dispersal curve is frustrating. The principle
nevertheless is clear, In the three equations (9.2.6) we put ¢, = 1 (if we are
working with the right barrier) and replace s, by its value from (9.2.2) with
+ = +. We write the equations twice, with 6, = + and ~1 and consider
7 and s, distinct in each of the two sets. Then we equate the two z, v, and
6. There are then three equations in the four unknowns consisting of the
two 7 and the two s,. They should have a one-parameter family of
solutions which define the dispersal curve we seek. Of course, the =
obtained must be between 0 and min {r , 7,} and the two s, must be larger
and smaller than 27 — S.

For any particular set of wy, wy, Ry, R,, /* we could arrive at the empirical
answer. One way would be to plot cross sections of constant 8 of the two
barriers and see whether or not they all meet. The necessary equations are
obtained easily from a minor manipulation of (9.2.6).

Figure 9.2.3

¢ As ratios only of speeds and distances matter, the effective number of parameters
is at most three (for example, wy/wy, Ry/l, Ry/l).

w .
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What changes if we treat the case of w; < w,? From (9.2.2) 5y and
hence o; changes sign when cos s, = wy/w,, but from (9.2.4) o, now
remains constant on each barrier. It seems that the barriers will be broken
by roughly the same kind of dispersal and universal curves as before, but
now the latter will be a ¢-UC instead of a y-UC. We might conclude that
it is always the player with the slower speed whose strategy is beset with
discontinuities of singular surfaces, regardless of the curvature radii.

Research Problem 9.2.1. Investigate the case of w; < w, more fully. In
particular, what is the UC? Is it the same as the barrier in a pursuit game
in which P has simple motion and E bounded curvature ?

9.3. THE ISOTROPIC ROCKET

We return to this problem, solved with time of capture as payoff in
Section 5.5, and construct the barrier. This time a precise escape criterion
can be found, although sharp proofs for a few details appear to be re-
calcitrant. We adopt the reduced coordinates «, y, v as before (see Figure
9.3.1a), although we replace the X and Y by small letters. We also drop the
friction force. Even though unbounded speeds for P are thus admitted, the
problem gains in simplicity of formal mathematics without any sacrifice of
principle. We will indicate later what changes result from a restoration of

friction.
The KE, readily derived, are

:é=—Fzsin¢+wsinzp
v

_1/'=F£sin¢+wcos1p—v
v
v = F cos ¢.

The reduced space (z, y, v with #* 4+ % > [2, v > 0) & is shown in (b)
of the figure. As usual, /is the radius of the capture circle. We parametrize
€ byx=Isins,,y =1coss;, v==s,

Putting r = Va? + y? we compute the useable part by

P = x% + yy
= x(-—F—qsincﬁ + wsin w) + y(F?-sin¢+ WwCos g — v)
v v
= w(z sin p — y cos p) — vy.
Thus, on ¥, for the boundary of the useable part

max If = I(w — s;cos 5) = 0. 9.3.1)
\ 4
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(a) (%)
Figure 9.3.1

Looking along the 2-axis we will thus see the BUP as the cylinder cut by
the hyperbola
vy = wl.
(See (b) of the figure.)
Using s, = 5 as parameter we can write for the BUP, using (9.3.1),

z=+IJ1 — (w/s)?

y=1"
s (9.3.2)

v=s, 52w,

The rest of the initial conditions are, as is easily inferred from +’s being
normal to (9.3.2) and satisfying the ME, below:

n = £/1 —(w/s)?

The ME, is

. -U .
max ngn [F (—v sin ¢ + v, cos ¢) + w(, sin p + v, cos ) — vvz] =0
¥
where U = v,y — v,.
If we also put

PL= N 0'2/02 + "’32,

P2 = ‘/”12 + »?

.
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we have

sin$=£, cos = — 2
Upy P
sin § = 2, cos1p=12
) P2 Pz
and the ME, is
_FP1 + wpz - v'yz = 0.
We are led to the RPE
s=r 2, 5, =2l
v'py P2 vpy
;}:_F.ﬁzg._wﬁ_l_v’ yz__F’;],U
v'py P2 Py
2
3=F13’ :Js:Fal—vﬁ
P1 U'p

The closed integration of this system, with the foregoing initial conditions,
presents its elementary difficulties, but the result is (we use as a convenient
abbreviation W = Fr — w):

2 2 2 _ 3
x=iiL:LP_mw+lhﬂ’ ) = 2V =W
v 2 v

Y= %[G Fr® — I)W+ (s* — w2)7:|, vy = — _I'_:' (933)

v=\/sz—w2+W2, v,=&.

The + distinguishes the right (z > 0) and left sides of £. By symmetry,
we may restrict ourselves to 4 = +, that is, the right barrier.

We also compute from the above

Pty =P (= wh— 1P + %F’-r‘. 9.3.4)

As we should expect (0) = /, 7(0) = 0. But we also observe that when

s2—wt—=FI<0
or when

s<S=+/w+F (9.3.5)
then 7 (0) < 0.
Thus when (9.3.5) obtains, our paths enter % for small 7 and so are useless
for constituents of a barrier.’ Let us call the points of the BUP which

® An instance of the phenomenon mentioned in Section 8.5 (see Figure 8.5.3).
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mark the beginning of this phenomenon B* and B-. They have the

coordinates
2
BE: x-—;};l\/s W =ilﬂ-l
S
=¥
y S
= S.

Our next result is: at B*, the path is tangent to the BUP.
For the tangent direction to the BUP is obtained by differentiating
(9.3.2) and putting s = S.

x‘=ls2¢F1’ yo=—1lg, n=1

Also at B*
TR/ TN B LU T
s*’ s S

and these two triples are one a multiple of the other.

The escape condition is that the two parts of the barrier meet or that
there exist 7y = 7(s) > O such that z(7y) = 0. From (9.3.3) this means
that

Fr? — 2wr + 21

have a positive root. Thus the discriminant w? — 2FI/ must be positive. This
condition is sufficient, for we can take for 7, the lower root:

— 2 —
o m 2 28] 046)
which is plainly positive.
The above suggests that
the escape condition is w? > 2FI 9.3.7)

but substantiation is needed.

When (9.3.7) holds, let us call the curve where the barriers meet the
crest. Its form is interesting. If we substitute the value (9.3.6) of =, for 7
into the ¥ and v of (9.3.3) we find, after a little manipulation that

y = v7,. (9.3.8)

Thus the crest is a straight line through the origin, in the (z = 0)-plane,

with a slope (y/v) given by (9.3.6).
When (9.3.7) holds, our work thus far leads to a barrier having the

appearance of Figure 9.3.2.

EY I
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The barrier, as thus far constructed, has the form of a semi-infinite
tapering tent. But the right (on the figure) end is open, for beyond B, and
B_ our barrier construction fails. What sort of semipermeable surface will
seal it? This question proved the most difficult one thus far met in the
subject. The answer will be given shortly.

The remarks about sidestepping, in the discussion of the homicidal
chauffeur game, apply here. There is no need to reiterate the argument
that a meeting of the barriers implies possible escape for E.

Figure 9.3.2

If friction were restored, we recall that our function Q(7) (see Section
5.5) is the radius of the cylinder of which the surface of constant 7 is part.
The envelope principle (Section 8.8) holds; the barriers are the envelopes of
these cylinders. Thus the meeting of the barriers is equivalent to the
radius somewhere being 0. Therefore we can generalize the condition

(9:3.7) by replacing it by min Q() = 0

Exercise 9.3.1. Show that, with friction, the critical condition which
demarcates capture and escape is

E-or (B8] o

Replacing = by < signifies capture.
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Show also that as k — 0, this condition reduces to the present case:
w? = 2Fl.

Research Problem 9.3.1. We have said nothing about the termination of the
barriers. When the escape condition (9.3.7) does not obtain, we should
expect the barriers to demarcate the necessity of something analogous to
the swerve maneuver; indeed Figure 5.5.5 bears this out. Thus it is
reasonable to expect that the barriers do come to an end.

Figure 9.3.4

Using the barrier equations (9.3.3) and forming the 3 X 2 matrix
Az, 9, v)
s, 1)

we can investigate the possibility of its rank falling below 2. Such happens
when

w428 — W — 2F]
= 7 .
Observe that for s > S, the argument of the radical is positive and that

=1 (9.3.10)

w
TO<;<TT

so that the presence of 7, cannot interfere with the formation of the crest.

.
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Does the barrier actually terminate when 7 = 7,? If so, in kinematic
terms, what is the reason?

Problem 9.3.1. The Monotropic Rocket. Investigate the one-player game
which differs from the present one only in that the thrust vector (of length
F) always points directly forward. Thus P must move in a straight line
and he has no volition.

The BUP will be the same as before, but now the barrier paths will fail

when s < S;, where S is a root of

53 — wis — whl.

But nevertheless the natural barrier is complete. (See Figure 9.3.4.)
Obtain these results as part of the full solution. What is the kinematic
significance of the paths that begin in the nonuseable part?

94. THE ISOTROPIC ROCKET: THE ENVELOPE
BARRIER

To complefe the solution of this game of kind we must apply the ideas of
Part III of Section 8.5. We shall construct curves, 2* and 2~ in the non-
useable part of €. Passing a semipermeable surface through them, each
curve will be the envelope of constituent optimal paths.

In this section, as most of results will be on €, we prefer new labels for
its parametrization. We shall write

z=1Isin0
y=1lcosf
and the third coordinate shall be simply v. Thus we have replaced s, by 6

and s, by v. We shall use v, 0 as coordinates on %.
As we did in Section 9.3, we can write on €

=x(—ngin¢+wsin1p) +y<F?—:sin¢—v+wcosy))
v v

= I[wcos (p — 0) — vcos 6].
Thus whenever

veosh (9.4.1)
w

we can pick  y = ¢ = (v, 6) = 6 + cos™! (v cos O/w) 9.4.2)

so that 7 is O regardless of ¢. Hence, an essential hypothesis of Theorem
8.5.1 is fulfilled.
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Figure 9.4.1

The condition (9.4.2) does not define ¢ uniquely. There are two
possibilities when (v cos §)/w < 1. These are portrayed in Figure 9.4.1.
The condition that the distance PE remain fixed as / is that the v and w
vectors have the same projection (marked by braces) on the line PE. The
choice between the dashed vectors is at E’s disposal. Because evasion is
his objective, we presume that he selects the one on the opposite side of
the line PE from the v vector. A brief study of Figure 9.3.1a shows that
this choice renders sin (p — 6) > 0.

Assuming p = ¥, we write, in the language of Theorem 8.5.1 the KE of
the game G;. First we have, from the KE of G,

% = lcos 66 = —F—lcosesin¢+wsin17:
v

Isinf
——si

g=—1Isinff =F n ¢ — v 4+ wcos .

Multiplying them by cos 6 and —sin 6 and then adding leads to
16 = —F—lsin¢+ vsin 0 + wsin (¢ — 6).
v

We can now write the KE of G, :

; 2 __ 2.2
é=_%sin¢+”s“‘0+‘/v; v’ cos (9.43)
' v = F cos ¢.
Putting Z =1psin 6 + /w? — v2cos? 6
the retrograde form is
§=F sin ¢ — z
v ] (9.4.4)
v = —Fcos ¢

L
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v

BUP

ny

oD
3/

Figure 9.4.2

In the (6, v)-plane, the BUP has the equation

and B* has the coordinates

v=S=\/w2+K2
=5

where (recalling (9.3.5)) K = v/Fl and cos 8 = w/S, sin § = KJS.

Our immediate objective is to draw a
semipermeable surface of the game G,
(with KE (9.4.3)) through B, such as
the dashed curve in Figure 9.4.2, Itis
¢ to reach the v-axis at the v = v, > 0.
The equations (9.4.4) are of the form

o
6 =asing — ¢

with a, b, ¢ > 0. The vectogram, if

{na— a < ¢, appears as in Figure 9.4.3. For
Figure 9.4.3 semipermeability, if we are working on
the right side (6 > 0), the heavy arrow

must be chosen. If a > ¢, no surface locally exiosts.
The heavy arrow is the one that minimizes 8 /v and so is determined

>
-~
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by

§—6 3=—bcos¢(acos¢)-—(asin¢—c)(bsin¢)

SN
SN

= —ab + bcsin ¢

so that

sin § (or Z in the language of the theorem) = :—1

and so

o 2 _ 2 o
=-—° - A N ) (9.4.5)
[

More conveniently,

do_v_ b F _ K
b 6 JE_ g JZYE - Pt Q

where Q =+VZ% — K412,

At B+ we note that

(9.4.6)

zZ= Ssinﬂ+\/w2—Szcos2,B=K
and

0=VK — KVS* = %/(w2 FK)— K= % 9.4.7)

The immediate problem can be stated in terms of passing an integral of
(9.4.6) through B*. We note that at B+, this curve will be tangent to the
BUP. For the former has slope

wK SK
Kf— = ——
S w
and the latter
d( W') W, (S)2K SK
—{— = sinf =w(=)] ===,
df\cos 8/e=s cos® B w S w

To finish the barrier problem completely, we should prove three things:

(1) As we integrate the differential equation always we have a < c.

(2) The integral through B+ reaches the p-axis at v, > 0.

(3) The paths in the original & with initial conditions along the integral
curve constitute a new portion of the barrier which joins to the old
without leaks, and together the two seal off a portion of &.

LI
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We have not succeeded in proving these statements fully but what is
unproven seems likely. We note in regard to them:

1. The condition a < ¢ is tantamount to Q% > 0. Now (9.4.7) shows
Q is real at B+ and therefore the integral curve can be extended
for some positive distance from B* at least.

2. We have proved (omitted here) that if Q remains sufficiently large
along the curve, then (2) will hold.

3. See Corollary 8.5.1 and the succeeding text.

Finally, we show that, if the escape condition w? > 2FI does not hold,
then (1) and (2) cannot be true. For, when 6 =0,

Z=+wt =
K4
and QP =w—v——.
v
We are interested in the latter for 0 < v € w. Near both ends of this
range O < 0. Its max occurs when
dQ* Kt
= =—14+—==0 or when v =K
av® + vt
and here
0? =w? — K2 — K?=w? — 2FI.

Thus when the escape condition fails, Q% cannot be positive anywhere on
the segment from (0, 0) to (0, w) and the integral curve from B+ must
terminate before reaching there.
But, with capture prevailing, a terminating, nonbounding barrier is just
what we should expect!
What does all this mean in terms of the kinematics of the original
problem? A crude view of things is shown in
Figure 9.4.4. First, when the outcome is
neutral, P pursues E. The motion of each is
elementary; E travels straight and P with a
constant direction acceleration. Ultimately E

E  reaches the capture circle (X); the motions

of both have been such that the (relative)

X2 X, contact is tangential. Now E, by playing
Figure 9.4.4 y = 9 (or by picking the direction shown in

Figure 9.4.1) stays on the circle. During
this phase P picks a ¢ yielding the heavy arrow in Figure 9.4.3. Now P
and E in the realistic space are traversing paths of a fairly intricate type.
Finally, when E arrives at some point X, on the capture circle he will be
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able to leave it with no danger of immediate capture. Thus he has com-
pleted a maneuver which might be called “sidestepping with contact.”

Exercise 9.4.1. Complete Figure 9.3.2 by drawing in the new envelope
barrier as best you conceive it.

9.5. TWO REMARKABLY DISSIMILAR GAMES
IN THE SAME SETTING

The two points P and E have each simple motion in a half-plane
bounded by a line £. Their speeds are to be arbitrary; as only the ratio
matters, we shall let P have speed unity and E, speed w(w 2 1). Capture,
as usual, is to occur when the distance PE < .

1. In the first, called the lifeline game, E’s objective is to reach # prior
to capture and, naturally, P’s objective is the contrary.®

2. The distinction from the former game is that now reaching % will be
fatal to E. That is, capture will be considered to have occurred if either
[PE| < I or if E crosses £. We perceive a generalization of both the
wall pursuit game (Example 6.4.1) and the interception of a straight flying
evader (Example 8.6.1). The novelty here is that E is no longer confined to
Z but is free to roam one of the half-planes bounded by it. The name
here will be the deadline game.

Despite the parallelism of their formulations, the solutions are quite
diverse. The former has an artificial barrier; the latter embodies one of
envelope type.

Clearly in the game 1, all is trivial if w > 1. For E is free to put as
great a distance as he pleases between the two players and then to streak
unhindered to .#: all of & is the escape zone. Thus, here we will always
suppose w < 1.

On the other hand, game 2 is trivial if w < 1. For then E can always
be caught, even if £ be disregarded. The latter’s presence can only make
matters worse for E: all of & is the capture zone. We thus will suppose
w2l

For both problems we choose the coordinates shown in Figure 9.5.1a.

The common KE are .
gy = cos ¢

Yo = WCOS Y

% = wsinyp — sin ¢.

¢ This contest would be same as the simple blocking game (Example 6.8.2) if we
took w = 1. Because here we are interested in the game of kind aspect only, and in our
former treatment the payoff was continuous (the distance E can advance toward &
before capture), the sidelines lose a great deal of their interest. Hence, due to the
arbitrary speed ratio, we are essentially generalizing our earlier problem.

.
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Figure 9.5.1

It is a familiar matter now for us to derive the ME;:
max min [(», cos ¢ — vgsin ¢) + w(v,cos p + »ysin p)] =0
v ¢

so that, if
= ‘/”12 + v P2 = ‘/1’22 + 7
then
cos$=—h, sin$=ﬁ
P1 P
cosz/':=12, sin1/7=—v—”.
Pz P2
Thus the ME, is
—p1+ wpy =0
and the RPE
2
h=-
P1
;2 = —W 12 N ’l?, = 0
P2

The reduced space & appears in (b) of the figure. It is a quarter space
(%, > 0,y > 0) deprived of the interior of the cylinder €. The latter
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corresponds to the points where |PE| = I; its axis lies on the 45° Jipe of
the ¥19,-plane and it is such that its vertical and horizontal (but not axis-
normal) sections are circles of radius /. The plane y, = 0, of course,
corresponds to E’s being on % and will be denoted by Z;; #; and € meet
at_the semicircle ",

Example 9.5.1. The lifeline game. Thinking of x in &, we envisage its
meeting #; as victory for £ and € as victory for P. Thus, if both a
capture and escape zone exist they must be separated by a semipermeable
surface which separates %, and %. Hence it must pass through #". Here
is a pristine example of an artificial barrier.

Conversely, if we can pass such a surface through ¢ which separates
& such that &, and ¥ lie one each in the two components, it is clear that
these components will be the escape and capture zones.

We parametrize ¢~ by

y, =1lcoss
Yo =

. m ki
z=lIsins, —§<s<5.

A normal » to it and on it must satisfy

vi(—Isins) + vy(lcoss) =0
so that we may take
¥, = COS §, ¥; = sin s.

We invoke the ME, to obtain »,. As p, = 1, we have
P2 = 1_ Vre? + sin®s
w

or Yy = ;I;x/(l/wz) — sin? s

and + must be + to enable the vector to point into &.

As the state variables do not appear on the right in the KE, all », = 0,
we can write the equations for the barrier at once, the general formula
being x; = (initial value of ;) + (constant) X =. We have here

Y=+ 7)coss
Yp = wrv1 — w? sin? 5 9.5.1)
r=_{+ ({1 —w)r)sins.

To gain an idea of the nature of this ruled surface, let us extend the
paths backward beyond #. Putting 7 = —I:

$h=0
Y2 = —wh/1 — (wsin s)? (9.5.2)

x = wl(w sin s).

>,
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Figure 9.5.2

If we define the angle u = u(s) by
sinu = wsin s

so that u ranges from —f to +8, where § is the first quadrant angle wi?h
sin # = w. Thus the curve (9.5.2) is the circular arc of radius wi(< [) in
h -plane,
the zy,-plane g =0
yp = wlcosu

x = wlsin u, —-f<ugp
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and the surface.(9.5.1) can be drawn by drawing straight lines between the
corresponding points of it and 2", If w < 1, the result is as sketched in
Figure 9.5.2, which is a sort of half horn through " and clearly fulfills its
office of separating ., and ¥.

To get an idea of what’s what in the realistic space, let us imagine the
curve which is a horizontal section of this surface at height y; > 1. In
the realistic space this situation corresponds to P’s being at a distance Y1
from . The section itself can be regarded as a picture of the realistic
space: the capture circle will be the section cut of € and the section of #
will appear as the other curve in Figure 9.5.3a. If E starts from any point
below this curve he can reach % with impunity; from any point above
P can catch him first.

If w = 1, the barrier surface of Figure 9.5.2, coincides with the upper
half of the cylinder €; the curve in Figure 9.5.3 coincides with the lower
half of the capture circle (see (b)). What is the meaning ?

The answer is a static barrier.

Such requires that §, = y, = & = 0. From the KE, this can occur only
ifcos ¢ =0,sin¢ =1, w=1,sinp = %1, cosy = 0. We can then
normalize so that p; = p, = 1 and we must have further

=0, 1,=0, v=41.
The ME then being

max min [—(+1)sin ¢ + (£1)siny] =0
v ¢
plainly it is satisfied by the above ¢ and y. Then in the reduced space,

static semipermeable surfaces are planes normal to the zg-axis. For our
problem we utilize the halves of the two such planes which are tangent to

-

<—--i [
| cz {Ez
] ]
| |
CZ/ez
A
¥ 2N P
w<l w=1
(a) (b)

Figure 9.5.3

s
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€ and lie below. Such join into our former semicylinder to form a single
smooth surface.

Returning to the realistic space with fixed y,, we find we have adjoined
to the barrier the two dashed half-lines of Figure 9.5.3b. The above +
takes a different sign on each; it is easy to see that the arrows drawn
correspond to the flight directions of both players.

Note how this barrier agrees with our former analysis of the simple
blocking game.

Problem 9.5.1. Show that (if w < 1) the same # can be reached by the
geometric method. Consider the locus of points C such that

w(|[PC| — 1) = |EC]|.

Show that the barrier corresponds to the set of positions such that this
locus lies above .# and is tangent to it. Explain why.

Research Problem 9.5.1. Solve the lifeline game when .Z is replaced by a
circle. The playing space may exterior or interior to it. One might
generalize further by taking % as an arbitrary curve.

Example 9.5.2. The deadline game. In Figure 9.5.1b both .#; and ¥ are
now anathema to E. Their union can be regarded as the useable part.

Let us consider the semicircle ", It corresponds to positions where E is
on % and |PE| = I such as in Figure 9.5.4a. Clearly E can break away
only if his velocity component along PE can be made to exceed 1, that is, if
wsin s 2> 1. Defining S bysin # = 1/w,cos § = Jwr = 1/w this condition
is also s > . Now this s and that of Figure 9.5.1b are the same, and the
only portion of 2" which might be considered as nonuseable is the arc of
A called Ay, where —f < s < f. Thus the two points of £ with
s = £ f are all that we can salvage of a BUP.

An envelope barrier seems a likely answer. To construct one we shall
follow the scheme of Theorem 8.5.1.

We will redefine ¢ and p as shown in Figure 9.5.4b. To keep the
distance PE fixed at /, E should choose 9 so that the projection of both
velocity vectors on PE are equal. Of the two ways of doing this we shall, on
intuitive grounds, suppose that he strives to make s increase; for example,
in the figure he will endeavor to move counterclockwise around the
capture circle. Then clearly

. 1
COs P = — COS

z

(9.5.3)

sin § = -l-\/wz—cosqu
w
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(d)
Figure 9.5.4

and for short we shall call the radical R. For coordinates on € we shall
use s and y,. As z = [sin s we see from the figure

(Icoss)s =z =wsin(s + 9) — sin (s + ¢)
= sinscos ¢ + Rcos s — (sin s cos ¢ + cos 5 sin ¢)
= (R —sing)coss
and also
Yy = —wcos (s + ») = Rsin s — cos ¢ cos s.
Adjoining (9.5.4)
I§=R—siné

we have the KE of G;. To obtain a semipermeable surface we proceed as
with the isotropic rocket game:

0= ljﬁy'z— yz—é%lj=(R——sin ¢)(m—lz¢—sm’}+cosssin ¢>)

—(R sin 5 — cos s cos 4:)(9-(—’-8—-¢R—SiIﬁ — cos ¢>)

which reduces to

wisin coss + (W2 — 1)cossins — Rcoss =0.  (9.5.5)

L
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After further reduction (9.5.5) becomes a biquadratic equation in cos ¢, 3
For each root there is still 2 sign choice in evaluating sin ¢. However, -
there are but two of these four possibilities that are solutions of (9.5.5).
Such correspond to the extreme vectors of the vectogram. From the
nature of our problem we wish 6/y, negative, for during neutral play s
clearly increases (to f) and y, decreases (to 0). Only one possibility
achieves this. It turns out to be, and the reader may check it,

EXAMPLES OF GAMES OF KIND

wcoss
Q
1—wsins
Q
_ w(w — sin s)

Q

cos ¢ =
sin ¢ = 9.5.6)

R

where

0 =+1+wt—2wsins

and these values occasion, when substituted into (9.5.4),

gp= — WAL= WSINS) - ich < Owhen 0 < B.

Q (9.5.7)
wi—1
1
The quotient yields

§ =

dys _ _( wl
ds wh—1
an equation which is to be integrated with the initial conditions: s = g,
y, = 0. We obtain

yz_wg

)(1 — wsin s)

(9.5.8)

wk — s — wcoss)

wherek = B 4 wcos § = 8 + v w? — 1. There is no reason why s should
not parametrize 9, the envelope curve. The other two equations are easy
to obtain. Asy, — y, = [coss,

Y= 21 1(wk—ws-—coss)
(9.5.9)
Yy = ——— (wk — ws — w?cos 5)
we—1
x = Isins

7 We are working here on the side of &, where « 3> 0.
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which are the equations of 9, or rather the branch for which z > 0.
Clearly the range of s in (9.5.9) is [8, 0].

To obtain the semipermeable surface is easy; it is the union of 9 and
jts half-tangents properly oriented. The first equation is obtained, for
example, from (9.5.9), if ¥,(s) means the latter’s right side, by

TWO REMARKABLY DISSIMILAR GAMES

Y1 = 4.(s) — 9/ ().

The minus sign appears because s decreases (from B to 0) as we proceed

retrogressively along 9. Of course, the 7 appearing will not measure time

of progress; this would be so only if s did along 9 and it plainly does not.

But the distortion of 7 does not change the surface, only its parametrization.
Thus the semipermeable surface finally is

g, = [w(k — s) — cos s + (w — sin s)7]

wi—1
(9.5.10)

Yg = [w(k — s) — w?cos s + w(l — w sin s)r]

1
wi—1
z = [[sin s — 7 cos s].

Because we are only working here on the z > 0 side, we break things
off at the 2 = 0 and adjoin a symmetric image. Figure 9.5.5 shows the

N

x

Figure 9.5.5

P
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Z i 2 %

Figure 9.5.6

final envelope barrier. The arc CB is the envelope curve 9, with s = § at
Cand 0 at B. As @ and X are tangent at C, as has been shown, the
tangent line CA to 2 lies in the z,y,-plane. The remaining half-tangents
to 9 are extended until they meet the = O plane, which they do at the
crest AB. This curve, as may be easily shown, rises (y, increases) on

proceeding from A4 to B. .
Let the letters 4, B, C also designate the values of y, at the corresponding

points. Then from simple computations

wl

Jwt =1

l 1 N |
B= 2__l[wk—1]=w2 1[w(sm 1;+\/w2-—1)—1:|
9.5.11)

A(=y, at 4) =

2
C=lcosf= liu.
w

To get an idea of what goes on in the realistic space, we consider, as
before, sections of constant y,, which can be regarded as pictures with P
fixed and E variable. When y; < C or >4 capture can be forced by P for
no position of E; the capture zones for the remaining case are depicted in
Figure 9.5.6 as shaded regions.

Exercise 9.5.1. What are the equations of the barrier sections in Figure
9.5.67

Exercise 9.5.2. Investigate the limiting case as w— 1. Show that when
w = 1, the barriers are static. Their sections in Figure 9.5.6 would appear
as inversions of those of the lifeline game: the configuration is the upper
half of the capture circle plus half-tangents extending downward to £

Research Problem 9.5.1. Investigate the paths of P and E in the realistic
space corresponding to x being on 2. Is there any simple interpretation
to the curved path of P?
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Research Problem 9.5.2. Generalize by allowing % to be the arc of a
circle.

9.6. EXTENSIONS AND APPLICATIONS OF THE
DEADLINE GAME

To start we take up (always w > 1)

Example 9.6.1. The one-sided deadline game. We envisage E as starting
from, say, far to the left of P who is a distance > / above .#. The object
of E is to move to the right and pass between P and .# without being
captured. Of course, P’s object is the contrary.’

The distinction between this problem and that of the previous section is
that now symmetry is abandoned. The same barrier suffices here, but we
no longer curtail it when x = 0. That is, the equations (9.5.10) still supply
the relevant semipermeable surface, but the parameter range is to be
enlargedtos < B, 7 > 0. Inthe counterpart of Figure 9.5.6, we retain only
the right boundary of the shaded region, producing it if necessary until it
meets £

But here we encounter a novelty. Our tenet that the barrier separate &
is violated. However, validity has not absconded but changed its nature.
Topology has intruded. Before expounding further, it is well to look at
our now asymmetric barrier.

Consider the curve labeled 2 in Figure 9.5.5. If it is produced beyond
B it will, as its equations show, spiral around the cylinder €. The barrier
then, the union of the half-tangents, will be a sort of flared helicoid. All
these rays extend upward, for we see from (9.5.10) that dy,/or > 0. All
then will meet a horizontal section provided they emanate from a point of
2 lying below its plane. Thus a high such section will consist of a spiral
whose number of turns is greater with increased height. Some cases with
progressively greater y; are shown in Figure 9.6.1.

The situation fits a game whose payoff is a non-negative integer.

Example 9.6.2. Looping the blockader. Let E start, say, from the left, as
in the last example, and finish on the far right. The payoff is the number
of counterclockwise revolutions he can make about P without being
captured or touching %, or it is —1 if E cannot even pass without being
captured.

It is easy to apprehend the solution. The curves of Figure 9.6.1 (for a
fixed position of P, of course) separate starting points of different Value in
much the same topological way as the sheets of a Riemann surface

¢ In terms of football, we can think of a ball carrier trying to pass safely between
a sideline and a slower, opposing tackler posted near it.
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Figure 9.6.1

separate the branches of a function.® For example, if E starts from C, D,
F, the Value is 0, 1, 2, respectively.

Example 9.6.3. The cornered rat game. The rat £ i§ entrapped in a corner
(of any angle):by the cat P.*° When is escape possible? ‘

In certain circumstances—one is shown in Figure 9.6.2a—by drawing
the barrier sections of the type just discussed to each wall we can Qeli'neate
the capture zone. Here E cannot escape if his starting point lies within the
shaded region. o

Further analysis of this problem will be presumed similar to that of the
one which follows and so will not be discussed separately.

Example 9.6.4. Patrolling a channel. Let E be confined betweer_1 two
parallel lines of distance apart L. His objective is to get past P without
being captured. .
Figure 9.6.2b is an instance in which E seeks to escape to the far rlght.
Again two barrier sections mark off a capture zone (shaded) of starting

(a) )
Figure 9.6.2

» For example, note the Value changes from 0 to —1 in going from A to B via the

dashed line in the figure. ) .
10 Speeds, motions, and capture are as in the deadline game and the same i

ensuing examples.

s true of the
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points from which E’s passage can be prevented through proper play by P.

In both these problems it is intuitively clear that for sufficiently favorable
values of the parameters E should be able to pass P without capture from
all (or possibly all but some insignificant subset of) starting points.

Let, us clarify a notion of intersecting barriers for sharper reasoning.
Suppose, in the analysis of some general game of kind, we encounter two
candidates for barriers which intersect as shown in Figure 9.6.3, where
n = 2 for simplicity. Observe that they are oriented oppositely from our
earlier cases such as the homicidal chauffeur game. There we saw that we
were justified in erasing the barriers beyond their intersection; here we
shall show that we should discard the entire barrier.

We suppose the barriers not static, that is, under optimal play x traverses
them toward €. Let x start from X;, which is in the capture zone but
very close to one barrier %,. Both players’ adoption of the optimal (very
near the neutral) strategy will occasion a motion nearly parallel to %,.
Ultimately x will reach X, near the intersection. If the same strategies
persevere, x will cross %, and E will escape.

Note that P cannot prevent this escape. The intersection of the barriers
does not entail constructive guessing by a player of which strategy—that
relevant to %, or %,—his opponent will use; an instantaneous mixed
strategy is futile here. Let us suppose that at X,, E decides on the strategy
pertaining to %,. If P uses this, too, we have seen that x crosses %, and
E escapes. If P does anything else, E’s strategy will occasion x’s crossing
of %, and again he escapes. Thus a// the nearby region belongs to the
escape zone.

To see that this kind of intersection does occur in our game when L is
sufficiently large, refer to Figure 9.6.4. To take into account the added
side of the corridor we adjoin, in the obvious way, the new coordinates

Figure 9.6.3

L
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(a)

()

e)
¢ Figure 9.6.4

L — y,and L — y,. The two & curves are igteftwining spirals as showq at
(a). At (b) we have a vivid attempt at depicting part of the Intersecting
barriers; the reader can convince himself that the onent'atlon is as in
Figure 9.6.3. Thus we conclude that whenever the channel is so wide tpat
the two barriers intersect, as at (c), then E can pass from' t.zny starting
position. We will show below existence (and find it) of a critical gh.ann.el
width where this kind of intersection begins, regardless of P’s position in
the channel. ' . o

Let L, denote the critical width at which intersection commences if Pis
centered in the corridor (y; = 3L,). The sectional barriers must both
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meet the capture circle with s = 7/2 as shown at (e). Giving y, and s
these values and 7 = 0 in (9.5.10), we ascertain that

2

wi—1
or L, = 221w1 (\/w2 —~1 —cos™? —1) 9.6.1)
w? — w

The assertion we are after is

If L> L, E can pass from any starting position (P cannot guard the
corridor) but such is not true if L < L,. (9.6.2)

We need but show that L > L, is the condition that the two barrier
sections intersect. We have seen that this is true when P is centered in the
corridor. To prove it for arbitrarily located P, as at (d), it suffices to show
that, when L = L, the two barrier sections meet at a point of the capture
circle wherever P is. Such is tantamount to showing that the two spirals of
Figure 9.6.4a coincide when L = L,.

The equation of one spiral is given by (9.5.9); those of the other by
replacing y; by L —y,(i=1, 2) and s by m=— 5. Our result follows by
noting that when L = L, the final replacement follows
automatically. For example, from (9.5.9) and (9.6.1),

CH

L, —y = ~{2w(k — g) — [wk — ws — cos s]}

wi—1

=7 {wk — w(r — 5) — cos (m — s)}. (&—p

Thus the assertion (9.6.2) is proved.

Example 9.6.5. The patrol line. Given a row of equi- (CX
spaced pursuers, under what conditions can a single
evader E pass through the row without being captured ?
By imagining corridor sides placed between each Figure 9.6.5

pair of adjacent P as shown in Figure 9.6.5, it would

appear as though, by the principle of reflection, this game reverts back
to the previous one. Thus a sufficient condition that the patrol line be
effective is that the spacing < L,. (9.6.3)

Research Problem 9.6.6. The Patrol Circle. Given a set of P equispaced
around a circle, when can they effectively prevent the escape of a single E
who is initially within the circle?

N
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This problem bears the same relation to the cornered rat game as the
above does to the corridor game.

Problem 9.6.1. Treat the limiting cases of the above games when w = 1.
Show that in the cornered rat and corridor games, a capture zone always

exists.

9.7. FURTHER GAMES

The examples in this section have not been fully solved. But they are of
interest and possibly of importance. Because no more than suggestions are
given for their treatment, the reader can regard them as research problems.

Bounded pursuit games

Here P and E move in the plane, both with simple motion, with E having
the greater (or possibly equal speed). But E (and possibly glso P) is
confined to a subregion Z# bounded by one or more curves. This class of
problem was suggested to us by the late J. von Neumann. .

The deadline, cornered rat, and corridor’* games are all instances.
Can we handle other regions? o

Suppose Z is the interior of a circle. If it is of large radius, it is reason-
able to suppose that results of the type depicted in Figure 9.5.6 will hold
when P is near .Z, now dished upward. Do the shaded regions retain their
validity as capture zones? Certainly when E’s starting point is witpix} them
he will be captured. But what of unshaded starting points? If it is true
that the shaded region of the figure is the only capture zone and it
changes continuously with P’s motion, then E will be able to escape
perpetually. For if not there would occur an instant when E would be
able to cross the boundary of the zone; but he cannot be forced to do so
because the boundary is semipermeable. v

If % is the interior of a polygon, we might similarly endeavor to apply fhe
cornered rat game to positions where P is near a vertex or the deadline
game when P is near the central part of a side.®

We hesitate to stress these concepts overmuch, for it seems likely that
there will be significant cases in which all of & is the capture or escape zone
and barriers will not be the appropriate tool.

11 Not exactly, for here E is not interested in passing P and can always escape. But
if the corridor is cut off by a cross boundary at one point (semi-infinite strlp) or at two
(long, narrow rectangle), then from some starting positions E must pass P in order to
survive and our previous ideas are applicable.

12 Especially the former. For if # can be contained in a half-plax‘le, then.a'non-
vacuous capture zone will exist. For this zone of the deadline game will a fortiori hold
for a more restricted region then the containing half-plane.
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Connectivity must have a bearing (assuming P is similarly confined to
Z). For in some cases P can clearly never catch E if he has to chase him
around a closed circuit.

Dogfight games

Let P and E move in, say, the plane, each with such kinematics that
their directions of motion are state variables (Example: bounded curva-
ture). Let each have a capture region which extends forward (in the
direction of motion) of his position. Figure 9.1.4 is a typical example.
Each player strives to get his opponent within his own region prior to his
being himself so caught. Thus we exemplify conflict between two single-
seater airplanes, each armed with unturnable guns that point straight
forward only.

Of course, a partie may be a draw in that neither player may be able to
force the other into his capture region. To simplify the discussion we shall
suppose this possibility excluded.

In the reduced space, € will consist of two surfaces, €, and %,, which
correspond to the boundaries of the two capture regions in the realistic
space. As play proceeds x moves about in & until it first penetrates one of
the %,. Which one determines the outcome.

We see the technique of solution at once. The two €; will intersect, for
both players being within their opponent’s capture region, either one only,
or neither, must all be admissible positions in any reasonable simulation
of reality. Let the intersection consist of one (or more) curves. We pass a
properly oriented semipermeable surface through these curves. It should
separate & into two parts which are the winning starting positions of the
two players.

Naturally dogfights may be formulated in other ways than a pure game
of kind. For example, victory may require that one’s opponent remain in
one’s capture region for some stipulated duration. Or a continuous payoff
could be adopted which is an integral of the time of the vulnerability of one
player less that of the other.

Battles of extermination

The players commence with certain numbers of ““men”?® and the kine-
matic equations describe the mode whereby these numbers are altered
during play. The player loses the game who first loses all his “men.”

Thus the contest is a game of kind and a barrier should delineate the
starting positions from which one or the other player wins. We have seen
how to construct such in discrete cases in Chapter 3. To adopt the same
principle to continuous models, in the light of this chapter, is not hard.

18 §oldiers or other munitions in a battle, checkers on a draughts board, etc.

L
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9.8. APPLICATION TO STABILITY AND CONTROL
Such problems are one-player games with our customary KE:
& = fdx, ¢), i=1...,n
and subject to the supplementary condition
f(0,0) = 0.1 9.8.1)

Here x is regarded as the “error”” of some possibly unstable n.lech.ar'lical
or electrical system and the ¢, are control variables wl'lgse- function it is t.o
obviate undesirable digressions from the central equilibrium state. .Thls
state is taken at x = 0, which is the interpretation of (9.8.1). The fles1gner
has the option of making ¢ a function of x—just our conception of a

rategy. .
" Varg}Zus criteria for stability are extant, generally based on the asymptotic
or ultimate behavior of the differential equations arising when ¢ = d(x)
in the KE. .

It seems reasonable that the theory of games qf kind can offer an
alternative approach. The boundary to all possible deviations fran
equilibrium will be a barrier and our techniques should be. z.tble to ascertain
it. Indeed the idea is used in the concept of “controllability.”®

14 See, for example, La Salle’s survey article [7] and the example in the Appendix.
15 See References [5].

CHAPTER 10

Equivocal Surfaces and the Homicidal
Chauffeur Game

10.1. INTRODUCTION

The remarkably eclectic and instructive game of the homicidal chauffeur
has appeared fragmentarily in several earlier sections. To weld the bits
into the full solution, we must introduce, in addition, the rich variety
already embodied, a new type of singular surface. It has, of course, wider
interest than for this one problem.

It is termed an equivocal surface, for one of the players has the choice of
two distinct optimal strategies at each of its points. The phenomenon
cannot exist in a one-player game; there is no counterpart in the calculus
of variations. We will expound its theory in Section 10.5 by a detailed
discussion of an example typical enough to embody all salient features.

For the homicidal chauffeur, both the games of kind and degree are
interesting. We solve the former here by a purely geometric construction
and treat the latter by methods partially so. This more transparent
approach will clarify, confirm, and complete certain earlier analyses.

10.2. THE HOMICIDAL CHAUFFEUR: GEOMETRIC
SOLUTION OF THE GAME OF KIND

We will exploit the symmetry of the game by speaking almost through-
out as if E were on or to the right of P’s line of travel. In other words, we
will work in the right half of the plane in which lies &, the reduced space.

To solve the game of kind we must construct the barrier. We have done
so by our standard technique in Section 9.1, but in the one immediately
following we shall obtain the barrier geometrically.

273
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The game of degree, with time of capture as the payoff, hinges strongly
on the barrier. As we have seen and will see again, it consists of two arcs
of involutes of the circles we have termed 2 and 2"_.! When these arcs
intersect, P cannot compel capture unless X is in the curvilinear triangle
bounded by them and % (see Figure 9.1.2). But such a position, as we
noted before, is a setup: E is planted directly in front of the oncoming
vehicle. Thus we are justified in regarding the intersecting barriers as the
general criterion of escape.

Of course, we can solve the game with capture time in this case (the
solution exists only in the triangle), but it is of much the greater moment to
work with nonmeeting barriers. These curves still play an important role.
They delineate the positions in which optimal play leads to a straight-
forward chase from those where a swerve? maneuver occurs.

We recall that E travels in the plane with simple motion of speed w;.
Thus his vectogram in the reduced space &, that is, in a plane rigidly
attached to P’s vehicle, is evident: we still have a circular vectogram of
radius w,.

But P’s vectogram (the ¢-vectogram) is not so apparent. Our first
step—Lemma 10.2.1 below—is to describe it in geometric terms. Recall
that P travels at the fixed speed w; (> w,) and with his radius of curvature
bounded absolutely by a given R. He navigates by choosing his curvature
$/R (with —1 < ¢ < 1) at each instant.

LEMMA 10.2.1. At any point X of &, the ¢-vectogram is constructed by
the steps (see Figure 10.2.1a):

I. From X draw a downward vector XA of length w,.

2. Through A draw a line H perpendicular to OX (O = origin). H
contains the headline of the vectogram.

3. From X draw the vectors XU ., terminating on H, which are respec-
tively perpendicular to the lines from (0, + R)to X. These vectors are the
extreme members of the vectogram, XU, corresponding to ¢ = *1.

Proof. Putr = R/$ (—1 < ¢ < 1), so that the center of the curvature
selected by P is C = (r, 0) as in (b) of the figure. Put d = |CX]|.

Now P’s pivoting about C in the realistic space is equivalent to X’s
pivoting about C in & in the opposite direction but with the same angular
speed. The resulting velocity of X will be XU perpendicular to CX and of
magnitude wyd/r.

Now consider the triangles OCX and AXU. They have two pair of
mutually perpendicular sides, and the length ratios of these sides is wyfr in
both cases. Thus they are similar, and the third sides OX and AU are also

1 They have centers (R, 0) and radius Rw,jw;.
2 See Section 1.5.
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Figure 10.2.1

perpendicular. This proves the contention in 2 and 3 follows because of
the bounds on ¢.

LEMMA 10.2.2. The semipermeable direction (properly oriented for the
barrier) at X is constructed by first drawing a circle of center U, and
radius w;. The sought direction is that of the lower® tangent (XD in
Figure 10.2.2a) from X to this circle. The local optimal strategies are:
é =1 and ¢ is such that E’s velocity is U, D, where D is the point of
tangency.

* “Lower” applies to X in the upper half-plane as sketched. For other X, the choice
of tangent is fixed by continuity.

.
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(a) ®) D..
Figure 10.2.2

Proof. If P plays XU, (¢ = 1) it is clear that the resultant velocities
available to E are those with vectors extending from X to points of the
circle (such as XF in the figure). None penetrates XD in the downward

direction. .
If E plays U, D, let U_D_ be the translate of E’s velocity drawn from U_

(see (b) of the figure). The resultant velocities available to X are those
with vectors XG, where G is a point of the closed segment DD_. None
penetrates XD upwardly.

LEMMA 10.2.3. The semipermeable surfaces (in the right half-plane and
oriented as above) are involutes of the circle .
Proof. From X draw the tangent XJ shown in Figure 10.2.3 to &',

y

Figure 10.2.3

[10.2]

In the right triangle CJX, the ratio (short leg: hypotenuse) is w,R/w;d
where d = |CX|. The proof of Lemma 10.2.1 shows that | X U,| = wd/R
so that this ratio is the same for the right triangle U, DX. Thus the
triangles are similar. As, from Lemma 10.2.1, XU, is perpendicular to
CX, it follows that semipermeable direction XD is perpendicular to XJ.
Classical knowledge of direction fields and differential equations now
establishes the lemma.
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LEMMA 10.2.4. Draw the lower ray from O, which is tangent to ",
The involute of Lemma 10.2.3 ceases to be semipermeable below this ray.
Proof. Referring to Figure 10.2.2b, it is clear that the semipermeable
property of XD fails should the segment DD_ lie on the same side of XD as

y
D
X
[»3
Ky
[7] ;] x
J
B
Figure 10.2.4

U,. Thus it suffices to show that, as X moves clockwise along the involute,
the angle D_DX decreases and it becomes zero when X meets the above
ray.

Now DD_ is parallel to the headline U, U_ and we recall that the latter
is perpendicular to OX. Thus we need show that, as the involute unwinds,
the complementary angle «, between XD and OX (see Figure 10.2.4),
increases and becomes a right angle when X reaches the ray (such as at B in
the figure). But this is obviously true, as « steadily approaches a right angle
as OX and JX approach coincidence; which they attain when X is at B.

We are now in a position to (re)state the construction of the barrier. We
can suppose a capture region bounded by an arbitrary convex curve ¢
about O.

LR
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THEOREM 10.2.1. The right barrier is constructed as follows, the left one
being treated symmetrically:

Draw the involute, unwinding clockwise, of J¢ ", which contacts € and
is otherwise exterior to it. If this is impossible, there is no barrier. Other-
wise the barrier is the arc of this involute extending (in the unwinding
sense) from the contact point with € until the first point where it either
meets the left barrier or the lower ray through O tangent to J¢',.

The only detail of the proof not supplied by the preceding lemmas is that
the useable part of € is spanned by the contact points of the involutes.
However, if we assume € is smooth® and accept as known that the useable
part is a connected arc on the upper part of it, then, as tangency to the
barrier is equivalent to the BUP condition (Section 8.5.1), all follows,

10.3. THE PRIMARY SOLUTION OF THE HOMICIDAL
CHAUFFEUR GAME OF DEGREE

The term primary applies to the integration of the RPE with initial
conditions on ¥ to obtain the paths terminating thereon. In most examples
it is the first integration we do and an important one; in those with no
inhibiting singular surfaces indeed it yields the full solution.

The present problem is exceptional in that the primary integration is of
minor significance. The optimal paths on the right are shown in Figure

A
AN

Figure 10.3.1

¢ For general ¢ (which the barrier may meet at a corner) it is not hard to discuss t1_1e
game of kind in terms of embedding family. of semipermeable involutes, somewhat in
the manner of Section 8.5. II and not explicitly invoke useable parts at all.
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10.3.1 as well as the curves of constant V. For simplicity, we suppose the
% to be a circle centered at O.

We know that when the initial distance between P and E is appreciably
large, the chase will always culminate with x on the universal surface on the
y-axis. In the realistic space we know the interpretation: P follows E
along a straight path until capture occurs when E meets the foremost point
(C in the figure) of %.

The primary paths mark the exception: For E initially close and not too
much off center, P captures with a sharp turn only. The path of E is
straight; its optimal direction is such that he enters ¢ perpendicularly in
the sense of the relative motion of both players. ‘

It is not hard to show that the envelope principle® holds: the barrier #
is tangent to the curves of constant ¥, and 4 itself is an optimal path of
minimax time of capture.

Problem 10.3.1. We have stated that the optimal paths enter the useable
part perpendicularly to €. Yet the barrier, similarly an optimal path,
meets ¢ tangentially. In view of continuity of the optimal strategies,
explain this seeming contradiction. Generalize.

For convenience, we rewrite the KE:
. w .
% = —;ly¢+wzsm1p

g}=%x¢—w1+w2coszp, -1<4<K1

where wy = P’s speed
wy = E’s speed

R = minimal turn radius of P.
For € we have
z = lsins, y=lcoss

and & is the z,y-plane exterior to this circle.
The many preceding similar problems will render details of the inte-
gration unnecessary. We state some results without proof.
The useable part of ¥ is
=5 <5< 8, (10.3.1)

where cos s, = w,/wy, sin s, > 0.

5 Section 8.8.

E
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The optimal paths are given by

w LW
z = (I — wy7) cos (s+;17-) +Rs1n;1'r

y = (I — wyr) sin (s+;—v§'r) + R(l — COS%T)_

where s satisfies (10.3.1) and 0 < 7 < I/w,.

The curves of constant ¥ are arcs of circles with centers R(1 — cos (wmy/R) 1),
R sin (wy/R) T and radii / — w,r. Their envelope is an arc of &, which is
also the optimal path with s = s,.

Exercise 10.3.1. Prove these statements.

Research Problem 10.3.1. Although Figure 10.3.1 is drawn for the case
where the barriers do not meet, our reasoning, of course, applies to the
case where they do. How then does the point A, where the paths coalesce
(7 = I/wy), relate to the point of intersection of the barriers? In other
words, when the barriers meet and there is but a small bounded capture
zone, is this filled by primary paths or does a universal curve and its
tributaries cover part of it?

104. THE UNIVERSAL CURVE AND ITS
TRIBUTARIES

We have already seen in Example 7.13.2 that the y-axis above C is a
universal surface and the only® such. Itand its tributaries correspond to the
most obvious and general type of play. As redepicted in Figure 10.4.1a,
P first turns sharply as possible until he is pointed at E and then travels
straight; throughout E traverses the same straight path which lies on a
tangent through his initial position to the nearer of P’s initial curvature
circles. Such was proved in Example 7.13.2.

LEMMA 10.4.1. In the domain of the tributaries, the curves of constant ¥
are involutes of the pair of turning circles.?

(By “‘pair” we mean that if the involute is drawn in the usual way by an
enwrapping string, the union of the two circles can serve as the enwrapped
solid guide as shown in (c) of the figure.)

Proof. We know that E’s flight direction is along the tangent, here the
generating “string.” From the ME, we know that his optimal direction is
normal to the curves of constant V. A simple principle of differential
equations now confirms our result.

¢ An inverted sort of exception will appear in Section 10.9.
? The circles of centers (£ R, 0) and radius R.
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(b)
Figure 10.4.1

An appendix to this chapter contains some of the analysis relating to the
domain of the tributary paths.

Research Problem 10.4.1. Do the optimal paths here—the tributaries to
the universal curve—admit of such a simple geometric interpretation ?

The optimal paths are sketched in (b) of the figure. One of them, that
which passes through B, the barrier end, meets the lower y-axis at F.
From each point of the axis on or below F two optimal paths, right and
left, emanate. These points thus constitute a dispersal curve. In the
realistic space they correspond to positions at which E is directly behind P.
The simple type of play (as at (a) in the figure) is optimal, but both players
are confronted with a left-right choice and the problem of out-guessing
the other. It is a typical instance requiring an instantaneous mixed strategy
as discussed in Chapter 6.

On Figure 10.4.1b is indicated all covered thus far of the solution of
the homicidal chauffeur game when the barriers do not meet. But we are

.
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challenged by a large empty region of & untouched as yet by any phase of
our solution. Itis roughly bounded above by 4 and the nonuseable part of

% and below by arc of the path BF. From starting points therein—X, on the.

figure is typical—we are intuitively led to believe that a swerve must
follow. If this is so, for a state such as X, P must begin with a sharp left
turn, which will occasion a velocity of X; somewhat as shown by the
arrow. It seems safe to conclude that ultimately x will cross BF and will be
in a domain already treated. But what of the transition? This proves to be
far from a simple question and to it we now turn.

10.5. EQUIVOCAL SURFACES

They are singular surfaces of type (4, u, —). In this section we shall
describe the general conditions for the occurrence of an equivocal surface
(abbreviated ES), but our later, more refined analysis will be limited to the
case where n = 2. In fact, a single example will suffice to elucidate the
whole theory.

The names derives from the choice of two optimal strategies at each
point of the surface at the disposal of one of the players.

These surfaces, unlike many types already studied, have no counterpart
in the calculus of variations. They cannot occur in a one-player game,
The implication is that the underlying theory of differential games must
essentially depart from any mere extension of classical ideas.

Suppose, in a certain differential game, that it is clear, on intuitive or
other grounds, that the optimal paths behave as typified in Figure 10.5.1.
Those that reach € belong to some family (1), but at (2) there is an entirely
different family. Optimal play demands that x, starting as shown, must
first traverse a path (2) and then switch to a path (1). The paths (1) are
yielded by a valid solution of the main equation which extends well up to
and beyond where a juncture with paths (2) would be expected to occur.

We are interested in the mechanism of the transition from one type path
to the other.

For convenience we shall refer to the paths (1) as primary and their
union as the primary domain; the paths (2) will similarly be secondary.

Let & be the surface at which the transition occurs (on the figure it
might be one of the dashed curves). On reaching & via a secondary path,
x must either penetrate %, remain on it, or regress backward. The third
alternative is absurd if the secondary paths are posited as optimal and the
bearers of unique optimal strategies in their domain.

The second alternative, depicted at (a), has % acting as a semiuniversal
surface: once x reaches &, x traverses it. We will refer to values of the
control variable which engender such play as traversing strategies.

In the remaining alternative ((b) in the figure), & acts as a transition
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surface: x penetrates . We will speak here of penetrating strategies.

We will now make four explicit assumptions:

Al. The choice of which surface is to act as & rests entirely with one of
the players. For definiteness let us say he is P.

A2. The choice as to whether x penetrates or remains on & rests with
the other player. Calling him E, then he alone chooses between the
penetrating and traversing strategies.

Now let us consider some “smooth’ one-parameter (4 = the parameter)
family of surfaces, each eligible to be &. By “smooth” we mean that
distinct members of family do not intersect, and as Aincreases, the surfaces
shift smoothly in the same general direction. (See the set of broken curves
in the figure.)

A3. Starting from any fixed x in the secondary domain, let E elect a
traversing strategy which is optimal in all other aspects at his disposal.
Let P choose various A (member of our family of possible &) but otherwise
act optimally. Then the payoff is a decreasing” function of A.

A4. Under the same hypotheses, except that now E elects a penetrating
strategy, the payoff is an increasing® function of .

8 If (without changing the parametrization) both of these rates are reversed, the con-
clusions we soon will draw from these assumptions remain valid.

L
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Payoff

Figure 10.5.2

Plots of these two payoffs, as functions of 4, have the appearance then
of Figure 10.5.2. As E is the maximizing player, for each 1 his choice
between the traversing and penetrating strategies will be that yielding the
higher payoff. Thus it will be represented by some point on the composite
upper curve (overscored in the figure). Consequently P will pick the A
(A, in the figure) which yields the minimum of this upper composite curve,
which will be at the intersection.

We draw the conclusion, as this situation prevails for all smooth
families and all admissible starting points in the secondary domain,
that the optimal surface & must enjoy the property:

From each point of & optimal play of the traversing or penetrating
type each leads to the same payoff, the common value being the Value.

This requirement will be known as ES condition and a surface fulfilling
it, an equivocal surface.

For n = 2, the only case which we have studied in any detail, it turns
out that the ES condition is tantamount to an ordinary, first-order dif-
ferential equation. Thus, generally, an equivocal surface can be passed
through an arbitrary point. What starting points befit a particular game is
often clear from its context; generally we might observe a possible analogy
between this question and that of fitting a barrier (Section 8.5).

Still retaining n = 2, let P and E have roles as in the assumptions.
We shall suppose that P has a linear vectogram and his optimal strategies
in the primary and secondary domains use the two extreme values of ¢.
(It is hard to see how anything else is possible.) To navigate the equivocal
surface, P will require an intermediate ¢ = $ Further, we shall assume
that time of capture is the payoff (G = 1) although it would not be hard to
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extend the following results to arbitrary positive G. We also suppose
vectogram additivity, that is, the resultant velocity of x is the sum of the
two players’ choices.

LEMMA 10.5.1. Under the above circumstances, the optimal traversing
strategy of E on an equivocal surface? is that which maximizes the velocity
component perpendicular to P’s headline in a direction counter to that of
x’s travel on the surface.

Proof. With G > 0, it is clearly best for E, when he permits traverse of
the equivocal surface, to keep the speed along it as low as possible. In
Figure 10.5.3 let X be a position on the equivocal surface ES, X4, and
XA, be P’s extreme velocity vectors (4,4, is his headline), and let the
dashed line be tangent to ES at X. Whatever be his vectogram, suppose
that E selects a velocity 4;B; (or its translates A,B, or A3B;). Now ¢
must yield a resultant tangent to ES; thus P selects XA; such that the
resultant XBj; lies on the tangent. Then, to minimize | XB,|, E strives to
make the line ByB, as far from 4,4, as possible. But such requires the
strategy of the lemma.

When the equivocal surface is known, then so too will be ¥ on it; the
secondary paths are constructed in the usual way, using this data as initial
conditions. The following lemma shows that the initial V; are reckoned
with E playing , the optimal traversing strategy of the above lemma (and
of course, P playing one of the extreme values of ¢).

LEMMA 10.5.2. The optimal traversing strategy of E on an equivocal
surface is continuous with his optimal strategy on the secondary paths.

Proof. Suppose the lemma false; let E play his optimal strategy with the
alleged discontinuity and let P play thus: recalling Al (choice of which

B
4,
/
B —
=
= X Az
ES
By x
Ag
Figure 10.5.3

® More appropriately “curve” when n = 2.
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curve is to act as ES resides with P) let him choose one, .%”, close to the
actual ES on the “secondary” side. That is, P makes his switch from an
extreme ¢ to q§ slightly before x reaches the equivocal surface. He can do
so with (at worst) an arbitrarily small penalty in payoff.

But as %’ lies in the secondary domain, due to the discontinuity, E’s
opposition to the travel of x along &’ will be bounded away from the
optimum of Lemma 10.5.1. Thus, if P’s defection above is sufficiently
small, he will obtain a payoff better than the Value. But such is impossible
against an opposing optimal strategy.

Problem 10.5.1. Give a formal proof according to the following outline,
For the KE take

d:i = a’i(x)qs + ﬂz(wa X), (l = 13 2)'
The initial conditions for the V; on the ES (parametrized by ) result from

solving V(%) ¢“‘ + B(p, ¥)] = —1 (ES condition)
i=1,2

<=1,

and $3 Vo, +max >V =—1 (ME).
i v

Show that a solution can be obtained through
Ea.% =0

2 8%, x)V; =max 3 BV, = —1.

(To apply Lemma 10.5.1, observe that f,a, — By, is the requisite normal
velocity.) “

10.6. AN EXAMPLE WITH AN EQUIVOCAL
SURFACE: PRELIMINARIES

Can a differential game actually have an equivocal surface as part of its
solution? If so, in a case such as sketched in Figure 10.5.1, then part of the
primary solution would have to be abruptly cut off even though the reject
is part of a formally valid construction. This matter merits close scrutiny
which we bestow on this aspect of the example below.

A second dividend accrues from study of this example. It emulates
that part of the homicidal chauffeur concerning passage around the end
of the barrier. It does so closely enough to warrant our applying the
conclusions drawn here directly to our main subject game.

Example 10.6.1. A game with an equivocal surface. We take & to be
the upper half-plane (y > 0) and € to be the positive z-axis:

€. z2=520, y=0
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The payoff will be time to termination. The vectogram for P will be as in
Figure 10.6.1. The vertical component will be bounded by the constants
+b, whereas the horizontal component will be u(y), a smooth, increasing,
and positive function. On the other hand, E will have a circular vectogram
of fixed radius w. We shall require that & > w > u(0) and that for some,
necessarily unique, y,

w = u(y,).

From Example 8.4.3 we know the barrier %. It is shown as the arc OB
in Figure 10.6.1b, the coordinates of B being xp, yp with y5 = y,. Note
that at B, & is vertical; the barrier terminates just as in the homicidal
chauffeur game—when its tangent is parallel to P’s headline.

The least time paths, when starting positions are rightward enough to
permit unhindered access to %, are easy. Since all vectors are independent
of z, P and E simply maximize and minimize their downward vertical
velocity components. That is, P selects his lower extreme vector and E’s

e
b
b
uly) Lq&_
(a

(b)
Figure 10.6.1

.
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L $=1

Figure 10.6.2

velocity points straight up. The resulting paths are all translates of the same
curve and are sketched at (b) of the figure. Let L be the arc of that one
passing through B which lies left of B. Those paths which are not ter-
minated by & constitute the primary paths in the sense of the last section.
In the primary domain it is clear that (consider the vertical velocity
component),

v=_2_ (10.6.1)

Exercise 10.6.1. Calculate the full solution in the primary domain when
b=3,u=y+1l,w=2 1

At this point one might suspect that the solution could be completed by
taking initial conditions on L and obtaining the optimal paths which feed
into it from below. That is L is to be a semiuniversal curve and the optimal
paths to appear as in Figure 10.6.2a.

Such a construction can actually be carried out. On L, H is to be the
primary V" as given by (10.6.1), and P selects his upper extreme velocity
vector. The analysis is not difficult.

Problem 10.6.1. Prove that a solution as in Figure 10.6.2a can be con-
structed and/or actually construct it for the specific data of Exercise 10.6.1.

THEOREM 10.6.1. The preceding construction does not supply the correct
solution.

Proof. Suppose it did. Then P’s optimal ¢ = ¢ would entail the choice
of his lowermost velocity vector for x on or above L and his uppermost
when below. On L, as we have seen, the optimal y =  leads to a vector
pointing straight up for E.

10 The barrier with this same data was the subject of Exercise 8.4.3.
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Diagrammed, these strategies appear as in Figure 10.6.2b, where X is a
point of L. The above strategies lead to the velocities X4 for Pand AC for
E. Thus the resultant XC is tangent to L.

We will now have E play an alternate strategy. In some neighborhood
N of L, E chooses a velocity vector pointing due left, which appears as 4D
in the figure. Let P play a K-strategy (Section 2.6) with ¢ as tactic and
finely enough subdivided so that all his points of decision fall within N.

For X on L, P will thus choose XA. The resultant is now XD, which
brings x (or X) below L. Thus P’s next decision will invoke the upper
vector X4, yielding XD, as resultant velocity. Ultimately x will again be
brought on or above L and the resulting velocity returns to XD.

Thus x, by an alternation between velocities XD and XD,, follows a
path oscillating about L. With finer subdivisions, such, it is easy to see,
approaches an equivalent motion with velocity XF,, the convex linear
mixture of XD and XD, which is tangent to L. That is, the payoff becomes
as if P had played the intermediate ¢ resulting in velocity XF. (FF, is
horizontal.)

But | XF)| < |XC|. Thus x traverses L more slowly under the alternate
strategy and the payoff is increased. Thus the type of play pertaining to
(a) of the figure is not optimal, for E can do better than the payoff it
yields when opposed by P playing all sufficiently fine K-strategies with ¢
as tactic.l!

COROLLARY 10.6.1. Not all of the primary solution is valid.

Proof. If the “solution” above L were correct, we could formulate a
new game for which & is bounded by %, L, and the negative y-axis. Here
# and L are to form %, the usable part of which is clearly L. Further, H
is to be the primary Value on L while G is again 1. The actual solution to
this new game results from the construction whose existence we asserted
(and requested in Problem 10.6.1). Then the solution of the original game
would have to be just what we proved it was not.

Before continuing with this example, let us observe that essentially the
foregoing construction is valid in similar one-player games.

Example 10.6.2. The same as Example 10.6.1, except that now w = 0.
The KE are now .
& = u(y)
j=-bp —1<¢$<L

There is now no barrier. But L persists; it is now the path of the first
stage solution leading to the origin. Adapting the preceding ideas, we are
led to a construction having paths as at (a) of Figure 10.6.3. In view of

1! Such a strategy appears to be the only way we can assign a meaning to his
playing 4.

RN
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¢=+1

(9]

(a) )
Figure 10.6.3

Theorem 10.6.1, we give a brief but direct proof that the constructed
solution is correct.

Clearly P should play his lower extreme velocity (¢ = 1) throughout the
whole partie whenever this brings x to €. For we can reckon the payoff in
terms of the vertical velocity component only, that is, consider the time
required for the projection of x on the y-axis to descend to . But ¢ = 1
yields the maximal possible downward speed throughout play and there-
fore is certainly best. Thus the primary stage paths are correct.

Suppose now x is to travel from a given point A to another B to the
right of 4 but too distant to admit the preceding strategy. The path of
least time is depicted at (b); the first part has¢ = —1 and a second ¢ = 1.
Exactly one such path exists, for if we draw the ¢ = —1 path through 4 and
the retrograde path with ¢ = 1 through B, they will intersect just once.
To see that this path is optimal, we think this time in terms of the hori-
zontal velocity component. It is greater with increasing y and clearly the
path at (b) attains the maximal integrated y.

Thus if the starting point lies to the left of L, the least time path to O is of
the type asserted and shown at (a). Finally, it cannot be that P can do
better if x first reaches % at some point rightward of 0. For were this the
case, the path would have to cross L; at the first such instant it is ynder
the aegis of the primary strategy and follows L to O.

Problem 10.6.2. Show thatif u = y — 1, and so not always positive, that
not all of L acts as a seat of initial conditions for the second stage paths.

Problem 10.6.3. Still with u = y — 1, if € is enlarged to the entire plane,
but €, save possibly at O, must be approached from above, show that
there are “third stage” paths.

10.7. AN EXAMPLE WITH AN EQUIVOCAL
SURFACE; SOLUTION

We return now to Example 10.6.1. We are going to show that the
assumptions Al to A4 of Section 10.5 are satisfied. As a prelude we
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observe that some parts of the first stage paths are valid; on the other
hand, in some region below and left of B the optimal gl; must be —1.12
Our problem is the transition between these phases.

Al. Clear. For P can pick the curve which demarcates the regions
where he takes ¢ =1 and ¢ = —1. If this curve is to function as an
equivocal one, of course he must use an intermediate ¢ = ¢‘>' on it. But
from the standpoint of K-strategies, this is unnecessary. As we will see
under A2 below, the ES-strategy of E compels a zigzagging about the ES
somewhat as in the proof of Theorem 10.6.1.

A2. The curve that we shall refer to as the ES in this paragraph can be
any smooth one such that

1. it starts at B.

2. it cuts each primary path above B with steeper slope so that the
equivocation in the definition of an ES is possible.

3. it can be navigated by x when E plays ¢, the optimal traversing

strategy, and P plays some intermediate ¢ which we shail call J;

We will show that E dictates the choice between traversing and pene-
trating play.

The various possibilities for a vectogram for X, a point on the ES are
shown in Figure 10.7.1. From 2, X, is above B and so u > w. Here
A4, is P’s headline. As the optimal primary (and also penetration)
strategy calls for E’s erect velocity vector 4,4, and P’s primary optimum
is ¢ = 1 or the vector Xy4,, the resultant velocity X,4, is tangent to the
primary path. From 2 the tangent to the ES has a steeper slope and is
shown as the dashed line. From Lemma 10.5.1, the optimal traversing
strategy of E yields the vector A4,B, (or 4,B, or 4,B,) perpendicular to
AyA;. Thus $ leads to the vector X,4, by P so that the resultant X,B, is
tangent to the ES.

Now suppose E should switch to 4,4, (penetration strategy). The
resultant velocity choice left to P ranges from Xyd, to Xpd,. All carry x
above the ES into the primary domain. From here, if each player wants to
reap the Value, he must play optimally and X,4, results. Thus the partie
concludes in the primary domain.

Now suppose E adheres to the traversing strategy 4,B;,. We will show
that P cannot deviate from J; without incurring a loss in payoff.

Suppose for some short interval he used a ¢ < q; Then x would rise
a positive distance above the ES, and the primary optimal strategies would
prevail for both players. By thinking of vertical velocity components only,
we see that this route, where x rises and then descends again, takes more

12 Upper extreme velocity.
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time than a direct primary descent from X, and therefore more time than
V(X,). .

On the other hand, if P adheres to a ¢ > ¢ during some interval, x
descends below the ES. (By Lemma 10.5.2, E keeps close to the velocity
A;B,.) Atsome later time x must recross the ES, say at X;. For, by 1, the
ES and # form one curve separating X, after its descent, from % and E can
prevent x from crossing #. Let E adopt a strategy which does so prevent,
yet which otherwise retains 4,B; when x is below the ES. Now the
depressed route from X, to X, takes longer than the one via the ES. We
can see this by considering horizontal velocity components only and
recalling that u(y) is increasing. Thus there is a way for E to force P to do
worse than the Value.

To deal with A3 and A4 we take for our possible % a family of curves
each fulfilling 1, 2, 3 as described under A2. Let A be as in Figure 10.7.2a.

A3. We are to show that, when E plays thie traversing strategy, the
payoff decreases with increasing A. It suffices to show that if (see (b) of the
figure) AB and DB are arcs of % curves, the time for x to travel ADB is
less than that for travel over the curve AB. Of course, AD is part of a
“secondary” optimal path.

We may concentrate on horizontal velocity components. On 4B and
DB such are u(y)—w and for AD it > u(y)—w. As u increases with y, the
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higher path A DB everywhere engenders the greater horizontal velocity and
so consumes less time of traverse. Thus the payoff decreases with 1.

A4, We now show that if x penetrates & to the primary domain, the
payoff increases with A. From (10.6.1), ¥V is an increasing function of y
in the domain. Thus, as the & curves have negative slope, the greater A,
the more time for x to reach & and the greater ¥ once x gets there.

Thus the existence of an equivocal surface is established. We now turn
to 1ts construction. The ES condition states generally that for travel
along this surface

& = —6(=-P)
i = (10.7.1)
where Vi§ the Value in the primary domain. In our example we shall work
retrogressively, G = 1, and ¥ is given by (10.6.1). But first we must write
the KE: .
Z=u(y)+ wsinyp

4= —bd + wcosy, ~-1<éK 1.

From Lemma 10.5.1, sin % = —1, cos % = 0, and (10.7.1) becomes in our
case
1

——bg. (10.7.2)

1=V=Va+Vj=0+

Thus for the ES

9

=1-Y
d=1-23 (10.7.3)

which, when inserted in the KE, furnish its differential equations

=—uy) +w

—b— (10.7.4)

wo Vo

~ \
\,

\ \

A

N

\\|
< ¥B

(a) ()

Figure 10.7.2
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Our equivocal curve is the integral of this system of differential equations
beginning at B: for initial conditions take # = xp, ¥ = yp = y, when
T = 75 = V(B) = y,/(b — w) from (10.6.1). Thus 7 on the ES is V.

Note that at B, £ =0, §# > 0 so that the equivocal curve here has a
vertical tangent. We learned in Example 8.4.3 that the same was true of the
barrier. Thus the two curves join smoothly at B.

Research Problem 10.7.1. Is this a general truth? When an equivocal
surface attaches to the termination of a barrier, do the two surfaces meet
smoothly ?
Exercise 10.7.1. Using the data of Exercise 10.6.1, show that in this case
the ES is a half-parabola.
[In fact, its equations are
z=—3}r— 12+ 25

y=r

(10.7.5)

forr>1]

We conclude this section by partially treating the secondary paths—
those emanating from*3 the equivocal surface— with an eye to corroborating
the material of Lemma 10.5.2.

The ME, of the current problem is

uy)V, — b¢V, + wp+1=0
where

& = sgn ¥, and also sin § = V,/p, cos § = V,[p, p =~/V.2 + VA

The RPE are
307:_“(?/)'—“’1?: Is'z":()
P
o Ve 9 ;
y=b$_w;’ V;=u(y)Va;

For initial conditions we use the equations of the ES with, for notational
consistency, 7 replaced by s. Then on the ES, V' = s. Using (10.7.4) for
z, and y,, our usual
was + Vil 8 = V8
becomes in this case
—Vu—w+Vb—w=1 (10.7.6)

which is to be solved for ¥, and V,, in conjunction with the ME,. We can

13 In the retrograde sense.
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see at once that a suitable formal solution is

-1
V, = — V,=0. (10.7.7)
We must note that ¥, < 0 when y 2> Yo or on all the ES but B.
To ascertain ¢, we must look at V, on the ES. From the RPE

IO/,, =u'V,<0
asu’' >0, ¥V, <0. Thus <$ = —1 or P uses his uppermost vector as we
should expect him to.
From (10.7.7) we see that initially (r = 0) sin ¢ = —1. Thus E’s

velocity is left and horizontal; it is continuous with the ES strategy as
Lemma 10.5.2 asserts.

The remainder of the problem entails little innovation and we leave it
to the reader.

Exercise 10.7.2. For the data of Exercise 10.6.1, show that the optimal
tributary paths to the ES are given by

z=(1=r+ 8 — 7T+ 7 +log (r + V1 + ) — ¥s— 17 + =
y=—3r4+2/1++2—2 45
Finally, the picture of the optimal paths is something like Figure 10.7.3.

10.8. DISCUSSION OF EQUIVOCAL SURFACES

Can the equivocal surface, as a smooth adjunction to the barrier, be
regarded as an extension of the latter? Only in the exiguous sense that each

.
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player can make x penetrate the surface only at the cost of a penalty in
payoff.

It is interesting to see how the players would be bound by such pro-
scriptions in practice, that is, in some realistic game for which an adequate
model is like the present example.

Suppose at a certain point of an (optimal) partie, x reaches the equivocal
surface and E elects the traversing strategy. Continued optimal behavior
by P retains the ES as a path and ultimately x reaches B. Here E no
longer has the dichotomy of strategies; to maximize the payoff he is
bound to the primary choice. But also at his disposal is the optimal strategy
of the game of kind. If he plays so, then P must retaliate with his such
strategy or else x will penetrate the barrier and P will not be able to compel
an imminent termination. To obtain a later one entails recrossing of the
ES; if E repeats the tactic and P the response, continued recurrence pre-
cludes termination ever. Thus P is forced, from B on, to play the game of
kind strategy; x follows % and he must be content with a neutrall
outcome.

Is it wise for E'to act so—to play the game of kind optimal strategy when
x reaches B? It depends on how we assess the neutral outcome. We could
adopt the point of view of Chapter 8 and consider neutrality as something
inferior to proper interior termination. To have an exact theory we must,
of course, modify the original game by specifying a numerical value of the
payoff for the neutral outcome. How we so so determines the answer to
the above question.

In a “practical” execution the neutral outcome lies at the brink of
failure to terminate; such can be occasioned by any slight accident and
P will covet a margin of safety. The simplest and most reasonable way to
attain it seems to be: when x first reaches the ES, P continues his strategy
(¢ = —1) for some short interval, thus bringing x across the ES, slightly
into the legitimate primary domain.

An arbitrarily small penalty of payoff now buys P release from the
dichotomy of the ES, for from now on there is single straightforward
optimal strategy for each player.!®

Thus, interesting as the ES phenomenon is in theory, the accompanying
action probably is not of much importance in applications. For in
realistic play it will probably be circumvented as above. But the equivocal
surface remains as a boundary, delineating two different kinds of optimal

play.

4 As in Chapter 8. Here the meaning is that  touches % at its endpoint, the origin.
1% Let us note that “realistically” P was liable to such a penalty even under optimal
play. For if Eswitches from the traversing tothe penetrating strategy at some unexpected
instant, in “practice” there is bound to be some positive time lag in P’s response.
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We conclude with

Research .Problem 12.8.2. If u(y) has a maximum, say at y,, then it is clear
that the line y = y, will be a ¢-universal surface sufficiently far to the left.

What is the rest of the solution? In particular, do the US and ES (if there
is one) meet ?

10.9. THE EQUIVOCAL PHENOMENON IN THE
HOMICIDAL CHAUFFEUR GAME

The ideas of the preceding sections expeditiously fit the homicidal
chauffeur problem; we can construct an equivocal curve, which begins at
the end of the barrier, by the same method.

Let us suppose the left and right barriers do not meet and that x starts
from a point near and under the right barrier. Capture requires the
swerve maneuver: P must force x downward and around the barrier. He
begins by sharply turning left (§ = —1) and so occasions the descent of x.
But at some later time he will be playing the strategy of the right trib-
utaries of the universal surface, which call for ¢ =1, that is, he turns
sharp right until E is directly in front of him (x on the US) whence the play
ends with a direct chase along a straight line. The ES is here the locus on
which P makes the transition of ¢ from —1 to +1.

On the ES, E has the choice between the traversing and penetrating
strategies. What is , the value pertaining to the former? From Lemma
10.5.1, we see that % demands that E point his velocity vector normal to
P’s headline. From Lemma 10.2.1, this headline is normal to the radius
vector OX. Thus E’s velocity directly toward O, implying

In the realistic space if E plays the traversing strategy he follows a
course of pure pursuit'® of P.

Asfor P, his‘optimal strategy $ for x on the ES is generally distinct from
Oand 1. This appears to be the only optimal instance of his following a
path other than straight or circular with radius R.

The procedure for ascertaining the ES parallels that of Section 10.7 and
we need not repeat the reasoning. As above, % is known as function of z,

¥; we wish similar knowledge of $ It results from the ES condition
2V, + Vg = —1 (10.9.1)

where I'/; and ¥, pertain to the (right) tributary paths and ¢, § mean their
expressions from the KE with y replaced by the above ¥(z, y). If then
(10.9.1) is solved for ¢, the solution will be the sought J(x, ¥). Insertion of
these values of the control variables into the KE yields a pair of ordinary

!¢ That is, E always travels directly toward P.

w .
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differential equations; their integral path which passes through B, the
endpoint of the barrier, is the ES. . .

The foregoing analysis is done in detail in the appendix to this chapter;
the final differential equations appear as (10A.9). They seem to be par-
ticularly intransigent and we have unearthed little of their specific geomet-
ric properties. ' .

Figure 10.9.1a is an accurate construction of an instance of the equlvocgl
curve; at (b) are similarly drawn the corresponding paths of P and E in
the realistic space during this phase of the partie. '

There are two possibilities for the form of the ES, depending on th'e
parameters. It may meet the y-axis—the arc BC in Figure 10.9.2a—or it
may terminate on % as at (b). We will discuss only the former case,
which seems the more interesting.
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Let us trace an optimally played partie with x starting at X as in (a).
The optimal path meets, as shown, the y-axis, which here again acts as a
universal surface. After x reaches it at A, x traverses it to C. Of course,
other starting positions, such as X;, lead to paths such as X;D which
encounter the ES directly.

It is not hard to interpret the path XAC in the realistic space. The
players start from P and E of Figure 10.9.3; P begins with a sharp left
turn (radius R) while E travels straight along the tangent EF to the left
steering circle. After reaching F, P too travels the line EF. Such positions
correspond to X on the universal AC. Note the perversion of the simpler
capture depicted in Figure 10.4.1a; now E is doing the pursuing.

Both continue along the line EF, the distance between them increasing,
until it equals OC, a fixed constant of the game, of Figure 10.9.2a. The
positions are now P, and E; on Figure 10.9.3.

At this point P switches to his “‘equivocal” strategy ¢, and he flies the
curved course P, P, (see Figure 10.9.1b) while E, if he plays the traversing
strategy, follows along E, E, in pure pursuit. Now x is on the ES; at any
time E may switch to his (here right) tributary strategy. That is, he will
head along the proper tangent to P’s right steering circle, flying away from
the point of tangency, etc.

Note that when he was at P,, P had the option of turning either right or
left (x could follow the ES on either the right or left side of the y-axis).
If E responds with the traversing strategy he points at P in either case ;
there is no discontinuity in  and P is not obliged to mix his two choices.
But if E should elect the penetrating strategy, he too has a right-left choice

~ b4
N

<

r
e
A

(@) ()

Figure 10.9.2
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Figure 10.9.3

and an instantaneous mixed strategy is called for. Because it is safe for P
to mix in either case, it should be incorporated into his optimal strategy.
Recall that the part of the y-axis below C is a dispersal surface and, as
mixing is required at each of these points, demanding it at C too is not an
undue strain.

If E perseveres in the traversing strategy, x follows the ES to B, the
endpoint of the barrier. Here, for maximal capture time, E must pick the
penetrating strategy. But he also can play the optimal strategy of the
game of kind and achieve a neutral outcome. In fact, all the discussion
of Section 10.8 applies here. As there, in “‘practice” it would appear
beneficial for P to allow x to pass slightly below the ES and avoid the
quandary at a slight cost of payoff. In our description a convenient time
to do so occurs at the positions P; and E;; P merely continues along the
straight course EF until the distance P,E, slightly exceeds OC of Figure
10.9.2(a).

Finally, we ask if our solution is really complete. Is it possible that
there can be still another phase to an optimal partie?

In Figure 10.9.4 are sketched the optimal paths prior to the ES phase in
a game such as we have just discussed. Can there be a region, such as is
shaded in the figure, still unaccounted for?
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Figure 10.9.4

Resec.zrch' Problem 10.9.1. Answer this question. If “yes,” what is the
soh}tmn in the shaded area? Does there exist a further ES there, so the P
begins with a sharp right turn to get x on it?

APPENDIX

Analytic details

We.: shall fierive here the analytic expressions germane to the domain of
the right tributary paths and the differential equations of the equivocal
curve. We start by collecting the usual material.

The KE:
& = —cyd + wysiny
¥ = cxd — w; + wy cos y, —-1<¢K1
where w; > w, and ¢ = wy/R.
The ME,:

—Acg —wV,+ p=0
where A = yV, — 2V,, § = sgn 4,
p=vVV2+Vr sing= V”, cos¢=Kz.

The RPE: g g
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We can observe in passing the readily computable result
A=wV, (10A.1)
The universal curve is given by
z=0, y=s, s>

and as we know ¥V on it,

I Gt/
= (W — wp)

in our usual way, we complete the initial conditions with

1

V=V'=———
Y (w1, — wy)

and . V,=0

the latter following from symmetry and the known continuity of the ¥; on
a linear universal surface. On the right we clearly take ¢ = 1.
Integrating the RPE with these conditions yields

V,= 1 siner, V, = 1 cos ¢r (10A.2)
Wy — Wq Wy — Wy

x = (5§ — wyr) sin e + R(1 — cos 1) (10A.3)

y = (s — wyr)cos ¢ + R sin ¢

the latter pair being the equations of the right tributaries.
Multiplying (10A.3) by cos cr and —sin ¢r and adding leads to

(x — R)coser —ysiner+ R=0

which is essentially an algebraic equation for, say, cos cr. We solve it using
the continuous root such that r = 0 when z = 0, giving us

—R(z —R) + yh
cos ¢cr = pD
(10A.9)
— R)h
smc,=2£j;gﬁ__L

where d = +/(z — R)? + y? = distance x to (0, R)
and h=+/d? — R® = /a? + y* — 22R = length of tangent from x to
right curvature circle. Then, as we know = in terms of z and y, from
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(10A.3) we can easily compute s and then find ¥ from

V= s—1

+ 7 (10A.5)
W, — Wy

To study the ES, direct expressions for ¥, and V¥, are more pertinent;
they follow at once from (10A.2) and (10A.4).

We know that on the ES, E points his velocity toward 0. Working
retrogressively, we have E travelling directly away so that, from the KE,

= cud 4w
. T (10A.6)
§=—czf +wy + w2
r
where r = \/ % 4 g2,
The retrograde form of the ES condition demands that
&V, + gV, =1 (10A.7)

where the ¥, and V, pertain to the tributary paths. We substitutein (10A.7)
our now known expressions for them and also make replacements from
(10A.6). The resulting equation may be solved for qg', and we find after a
short calculation

wyr® — 2R + rh

10A.8
W - 1) (10A.8)

$=1-

where r = /a2 + ¥ h= \Jr? — 2zR.
Thus we know P’s optimal strategy for the ES at each point of & for

which the constraints on ¢ are not violated.
The differential equations for the ES are obtained by substituting from
(10A.8) into (10A.6). They turn out to be

Wi Wy ZR — yr — yh
R R r—y

§=_W1(x R)+W2?/R+(:v—R)r+xh
R r—y

(10A.9)

The initial condition is that the integral curve is to pass through the
point B. This point we know to lie on the lower ray from the origin
tangent of /", Now if we hold fixed all other parameters in the problem,
but alter the size of capture region, the point B can be made to be anywhere,
within certain limits, on the ray. Therefore for general initial conditions

.
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of (10A.9), we can take, when 7 = 0, a general point of the ray, which is

= S\/ 1 — (wafwy)?, y = —swylwy,

where s > 0, in fact, s is to be reasonably large.

Research Problem 10.4.1. Solve the differential equations (.IOA.9). in
closed form, if this is possible. Do these equations yield any interesting
geometric properties of the ES?

Research Problem 104.2. What is the path of P, or the differential equations
thereof, in the realistic space when x traverses the ES?

CHAPTER 11

The Application to Warfare

In certain cases, such as pursuit games, it is evident how to fit theory to
practice. But in problems of broader scope, such as those dealing with
battles or combat, the transition is far from obvious. The present chapter
aims at clarifying such matters, explaining in general the relations between
game theory and warfare, and assessing both the utility and the drawbacks.
Two examples are discussed, analyzed, and partially solved; they appear
both as worthy problems in themselves and as illustrations of the general
ideas.

The first is the War of Attrition and Attack, concerned with the best
allocation of weapons between these ends during a protracted war.

The second we have called the Battle of Bunker Hill. The central
problem is the optimal allocation of firepower when two antagonists are
nearing one another, the effectiveness of their weapons accordingly rising.
(The titlg is, of course, suggested by Warren’s historic command.)

11.1. GAME THEORY AND WAR

The treatment of problems of military combat by the theory of (dif-
ferential and otherwise) games is a big subject and a difficult one. Itisin
fact large enough to warrant its own book, and this single chapter will
necessarily be but the lightest of sketches. It is difficult because of the
inference caried by the term game.

In the present chapter, the application of game theory to a problem of
warfare will signify that both sides are to make effective decisions;! the

* Of course, in other contexts the set of decisions of one side may be null. Thus
one-player games are really programming problems, and there is nothing wrong in
treating the latter by the techniques of the former. In fact, a large proportion of the
problems of applied mathematics can be viewed as one-player games.
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objective is to determine the Value and the optimal strategies of each (in
the sense of game theory). A symmetry of approach is basic to this out-
look; a question of the best method of defense is just as much one of the
best method of attack. This interrelationship between alternatives facing
the two players—the decisions of each reckoned on the enemy’s counter
decisions—is the source of the increased difficulty over the simple (one-
player) optimizing problem. And the increase may be vast!

Game theory is a mathematical discipline concerned with problems of
conflict. Warfare, whose essence is conflict, must ultimately come under
its aegis. That such has not as yet occurred to a substantial extent
is due chiefly to the above increase of difficulty and the consequent
dearth of methods for getting answers. To this point we return in the
next section,

From now on we shall restrict our attention to zero-sum two-player
games. Of course, war itself, as history shows, is almost certain to be
two-player—alliances always have made it so, ultimately, if not initially—
but, on the other hand, it surely is not zero-sum. However, we feel that
war in the large is too vast a subject for the analyst’s pencil save possibly
in the remote future. But many of its less broad constituents, although not
exactly so, can be depicted as zero-sum games with adequate versimilitude,
For example, if we isolate an attack-defense situation, the number of
weapons (bombers, missiles, tanks, troops, torpedoes) which successfully
penetrate the defenses is a quantity which the attacker seeks to maximize
and the defender to minimize. To ascertain the best tactics of each player
and how much penetration (the Value) accrues therefrom seems a problem
that may be unobjectionably modeled as a zero-sum game. In fact, the
adaptability of a situation to a zero-sum approximation may be a good
shibboleth for mathematical tractability.

Not every military analysis requires formulation as a game. There are
some fine ones extant that furnish useful and valuable conclusions without
the dichotomy of standpoint which is the heart of game theory. But in
many others the embracing of a two-sided conflict is indispensable. Yet
the analyst is frustrated by lack of methods. What is available to him, now
and potentially?

11.2. THE AVAILABLE TECHNIQUES

The practical possibilities seem to be three.

Discrete matrix games

Such are the stuff of what now may be called the classical theory of
games. The concept of a game matrix, expounded in any text on the
theory, is fundamental; it was the means that enabled von Neumann to
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prove the existence of optimal strategies, pure or mixed, without which the
entire subject could not exist.

In principle, every finite, discrete game, as well as many other types, can
be cast in the matrix form. In practice, the trouble is that the dimensions
of the matrix will be astronomical unless the game is extremely simple.?
The simplicity usually means that effectively the game is but one move
l('mg.s While, in theory, a sequence of moves can be embodied into a
single strategy, the vast number of such is just what makes the matrix
colossally unwieldy.

But there are utilitarian military instances, for example, the distribution
of limited defense means over a finite set of targets of various values, with
the enemy countering with an allocation of its attack strength over the
same set. A second example concerns decoy attacks which may precede
an authentic one.* The attacker is confronted with the mixed strategy of
deciding on the number of feints; the defender, on allocating his munitions
among the apparent raids.

Differential games

When long or continuous sequences of decisions confront the partici-
pants, a practicable mathematical solution is virtually impossible unless
the game possesses an innate logical coherence in the sense we endeavored
to explain in Chapter 3. Differential games is the theory of games with
such' a coht?rence. Being our subject, further discussion will fill the
ensuing sections.

The greatest limitation of differential games at present to resolving
military problems is its restriction to games of complete information.
Possible remedial techniques and promising, if incipient, ideas are the
subject of the next chapter.

Simulation

Endeavors to play table models of war games, with teams of human
opponents, often assisted by computers, have been numerous and prolific
in the recent (as well as the remote) past. This is not the place for a
lengthy dissertation on so extensive a subject. From our point of view
experiment is a means both of confirming theory and suggesting new
avenues for analysis in warfare, as in other sciences. But we must not eye
the parallel and lose the distinction.
. As we shall stress below in regard to theory, war analysis is much looser
in laws, predictability, and logic than the physical sciences. For this

' 'l_‘ic-tac-toe (tit-tat-toe, oughts and crosses, three-in-a-row) for example, literally
requires a matrix of more than 10°* rows!

? There are numerous examples in Reference [8].

¢ Reference [9].
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reason simulations with elaborate and far reachingly realistic details
cannot yield reliable general truths unless the partie is repeated a great
many times. From the standpoint of differential games, one thing we
might hope for is confirmation of conclusions of the theory. This is
especially true when these conclusions spring from simplified models
(such must necessarily be the case nearly always). How will they fare
when imbedded in a miasma of realistic detail?

A second avenue we would advocate lies at the other extreme of playing
very simple operational games designed to illuminate some specific point
that has proved baffling to theory. Such, at present, will appear most
likely in games of imperfect information, such as Example 12.2.4 in the

next chapter.

11.3. TYPES OF APPLICATIONS

In certain cases the role of differential games in problems of warfare is
explicit and does not require much comment. Such is true, for example, of
most of the models involving pursuit, evasion, and similar maneuvering.
We have already mentioned that a strategy is the logical equivalent to the

scheme of a guidance mechanism, in the sense that
~  is supplies instructions as to how to set the controls
for each set of data measured.

The utility of the results can transcend a mere
application of the formal solution. For example,
if the optimal guidance scheme (strategy) is too
complex for practical mechanization, we would be
interested in knowing how good a substitute is a
simpler one. We could pit it against the optimal
strategy® of the opponent and ascertain the penalty.
— Additional instances have been noted -earlier,

such as applying the deadline game (Section 9.6) to
channel patrol or patrol line spacing. Another is
Figure 11.3.1 the question of whether or how much of launching
boost is needed by an interceptor missile with a

faster target. For a case, say, as that of the isotropic rocket (Section 9.3),
if the barriers meet, the quarry cannot always be caught. But a cross
section of the barrier of constant v(= P’s speed) supplies the set of target
positions where capture is certain, no matter how the latter maneuvers,
when v is the missile launch speed. The section will appear as in Figure
11.3.1. If the missile is aimed—as it should be—directly at the target, only

Range

% Or, sometimes better, against a strategy deliberately designed to defeat the simple
one.
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the range, as shown in figure, matters. But such is the height of the crest
and calculated from the simple formula derived from (9.3.8):

o(w — /w2 — 2FI)
- .

Range =

114. THE BROADER PROBLEMS OF COMBAT

We feel that one of the most fertile and profitable contributions of
differential games to warfare lies in a broad general category of battles
and combat. The path from mathematical results to usable knowledge is
not a simple, direct one, and we shall endeavor below to offer guidance
for its traversal.

We shall illustrate the type of ideas in mind by two examples; both
shall continue in this role as we go into further detail later on. A version
of the first has already appeared—Example 5.4, the war of attrition and
attack—but we shall soon try to examine its central question in realistic
terms. In a long-term war how best should a side apportion its attacks
between the long-range objective of destroying the enemy’s source of
supply and the short-range one of engaging his weapons in conflict
directly ?

The second we have called the Battle of Bunker Hill because our
central question brings to mind General Warren’s famous, “Don’t fire
‘til you see the whites of their eyes!” When forces of any type are ap-
proaching one another, the effectiveness of their weapons increasing with
the lessening distance, how best should each distribute (or conserve) his
firepower? Too early action is wasteful because of the small hit pro-
bability; too late action risks the enemy’s firing first and decimating too
much potential fire before it is put into action.

How can such broad questions as the foregoing two be answered?
Note that they are permeated by the basic concept of game theory: each
side has choices to make and the merits of his decisions depend on the
similar decisions made by the opponent.

The posing of the problem differs from those of the physical sciences in
that the war setting is vague, complex, and unpredictable. No matter how
we translate the situation into analytic terms we can never feel a comforting
confidence that this is the “right” way to do it, that the answer we get will
reliably concur with the actual outcome.

The best possible procedure, it appears, is to coin and then analyze an
assortment of models of the game. We should start with the simplest—
mathematical formulations of the situation in which the essential question
to be studied stands out bold and clear, and extraneous details are elimi-
nated. But even here there will be many possibilities; there is latitude in

LI
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choosing a payoff; there is more in constructing the kinematic equations.
We then strive to incorporate more realism by adding new facets. One
should try to adhere only to the most essential modifications, for with
addenda to the problem, the analytic difficulties proliferate rapidly.

With an assortment of solutions at hand, we should explore them for
common features. It is quite possible that plausible modifications in the
assumptions underlying a model can induce wide disparities in the
optimal strategies. The Value, however, will generally be much more
stable. Some study is now required to find what is consistent in the diversity
of solutions. At times there will be remarkable features, such as a dictate
that an optimal decision depends on the sign of an outré function of the
state variables. When possible, we should probe such matters and try to
understand them intuitively so that they can be assessed with some
practical judgment. We should investigate the sensitivity of the payoff to
the strategy, to our assumptions (the model), and to the values of certain
coefficients appearing in the kinematic equations or in the formal payoff
adopted.

Our goal should be those aspects that are independent of the details of
the model. If we find such, they will be valuable pieces of information.
If not, we can probably draw conclusions such as, say, that it is not critical
which of a certain set of strategies is used. Or possibly, say, that a certain
type of strategy is optimal only in certain circumstances, but there it pays
big dividends. Generally our conclusion should be that whatever feature
is common to these models should in practice be an indicator for this type
of strategy.

This technique of a congeries of models accounts for our title phrase
“broader problems.” The results will have to apply broadly if at all. It
is seldom that we will have sharp enough data for a detailed particular
situation with time enough to work out the solution. But, of course, until
programs of the preceding type are actually carried out, we cannot tell
what will come to light.

Once results are attained, simulational gaming would be a means of
testing them. We could pit a player (or team) using the results against one
who is intelligent but ignorant of them and compare with plays of two
knowing or two ignorant players.

The drawback to this program is that at present there seems no possi-
bility of its execution. The armed services sponsor a vast amount of
abstract mathematical research, but they appear extremely hostile to any
mathematical investigations of military matters, aside, of course, from the
indispensable computations needed for equipment. The private firm
cannot afford to, for the number of man-hours required is considerable.
The pure mathematician is hardly likely to interest himself voluntarily in
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such a program; if he has a bent toward applications he will prefer
remunerative work. The foundations and other pecuniary sponsors of
science, with their heavy financial obligations, must necessarily be chary of
backing any scientific research (of any sort) that falls outside an established
category or smacks of innovation.

11.5. PROBLEMS OF FORMULATION

We now examine in a general but more detailed way some of the
constituents of a program such as proposed in the previous section.

The payoff

First, we wish to make clear an obvious but often misunderstood point.®
Whether in a game or a “programming” problem (one-player game), the
term “optimal” has no meaning unless there is one quantity to be maxi-
mized or minimized. Often there are several important factors of merit.
But it is possible to optimize only one, and before a problem can be solved
it is necessary to specify which one.” We can take into account several at
once by employing as payoff a suitably weighted linear (or other functional)
combination of them. But somehow the weights must be decided and this
is almost always a matter of judgment.

Now it sometimes happens that the solution is largely independent of
the payoff. The strategy that captures most territory, for example, is
likely to be close to the one that captures most materiel. There is no
quandary then, but should the analytic results be sensitive to the payoff,
and a weighted, mixed one have been used, then the results are no better
than the judgment used in the weighting. A highly refined analysis, in such
cases, is hardly worth while.

Of course, there are many cases where there is no quandary at all. A
defense system will seek to minimize the number of penetrating enemy
weapons, for example, or warning system to maximize the probability of
detection. But in complex battle games, what is the logical choice of a
payoff? Frequently it will not depend on the immediate foray alone but
will have to be integrated with at least a portion of the enveloping war.
The subsequent utility of the outcome of the battle must be the coin of the
payoff.

To think of the logical ultimate, a bit of fantasy will help. Let us
imagine a catalogue of military utility, which will list valuations of all
sorts of military entities—weapons, munitions, personnel, bases. These

® We have seen armed forces study contracts which outline a complex series of
requirements and then ask for optimal action.

" Such is, of course, the universal dilemma of human judgment. When buying a car,
we can seldom optimize price, mileage, speed, and appearance at once.

.
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utilities will change with circumstances—supply at hand and potentially,
special uses for special purposes, the enemy’s counter supplies. We must
also have a set of rules for computing these changes. Then the payoff can
be expressed in terms of total current utility of all assets that could be
gained or lost by either side in the battle.

The kinematic equations
Setting them up also confronts us with alternatives. Once we have

decided on the state and control variables, we must express the rates of
change of the former in terms of both. It is at this point that we feel the
imprecision of our subject most sharply. How are we to write definite
relations between cause and effect of so indefinite a thing as a future
military encounter ?

There will be times when we can rely on data from experience or past
analyses, but there will be times when we cannot. We will know that the
greater the number w of weapons assigned against a number ¢ of targets,
the greater the damage to the latter will be. For lack of better knowledge
we often assume a linear relationship,

= —cw.

Can we estimate the coefficient ¢, which means the (average) rate of
destruction of targets by one weapon? Very likely, yes, although possibly
coarsely.

On such a basis we can construct kinematic equations, simply or
elaborately. Most or all of them will be linear in the control variables.
Then the essence of the technical problem is revealed by our theory.
Of key importance are the singular surfaces—universal, transition,
dispersal—associated with linear vectograms. Once they are discovered,
the structure of the optimal strategies is at hand.

To illustrate these ideas we now turn to the two typical problems already
mentioned. As we have said already, a large amount of man-hours is
needed to make practical headway, and we must be content here with the
merest of beginnings.

11.6. THE WAR OF ATTRITION AND ATTACK:
A STUDY

In the setting of a protracted war, each side must weigh the alternatives
between direct combat and the raids on enemy sources of supply with
possibly greater but future effects. Broad as such a problem is, we could
think of it in still broader terms by endeavoring to admit the general
problem of long- versus short-range tactics.
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Example 5.4 seems to be the simplest version possible and a good one
from which to start. The first kinematic equation is

%, = my — ¢, px,. (11.6.1)

Recall that z, and x, are the forces of the two sides, say amounts of aircraft,
at time ¢; m, and m, are the unperturbed manufacturing rates; v and ¢
are the fractions of weapons devoted to attrition, that is, depleting the
enemy’s supply. The foregoing equation states that the number of P’s
weapons is subject to a decrease whose rate is proportional to y,, the
number of weapons E devotes to this purpose at time 2.

Here is an instance of the linear assumption as mentioned in the last
section. The meaning of ¢, in terms of, say, aircraft is the reduction of P’s
rate of aircraft production due to an attack by one enemy plane. Is there
any hope of rationally estimating ¢, (and, of course, ¢,)?

Actually ¢, is the result of many quantities—the capability of the
attacking craft, the nature and effectiveness of the defense, the type and
strength of weapon (bomb), the vulnerability of bases and factories. If
such components can be assessed, so can ¢;. But we must not forget that
¢, is complex only because the total picture is, and what we are working
with is a preliminary simplification.

Of course, there are many ways to advance toward reality—and com-
plexity. One, which we shall actually probe later in this chapter, is that
in which it is assumed that the weapon depletion is proportional not only
to the enemy’s attack but also to the domestic supply. That is, the
attrition destroys a certain fraction rather than a fixed amount of the
target weapons. Thus the final term in (11.6.1) is replaced by cypz,z,.

Another avenue is a three-way allocation, the new category being the
assignment of certain weapons to the defense of ““bases,” that is, they
offset the losses inflicted by the enemy. To write the kinematic equations
in such a case, we would first have to analyze the subconflict between these
offensive and defensive craft. The result would be certain expected losses
to both sides and an expected penetration leading to diminished pro-
duction as before. But it might require an analysis longer than the current
one.

Of course, in any case we could take into account depletion of the
weapons assigned to the various tasks. The simplest assumption, that of
a fixed proportion, would adjoin to the expression for %, terms like

—ligx, — L(1 — )=,

where /,, L; are the average fractions of weapons lost that are allocated to

the two purposes.
So far a homogeneity of weapons has been postulated. Reality would

.
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require several types (bombers do not bomb only bombers). Some could
be, as up to now, used for the attritional sorties, defense, ajctack, or any
combination; different types would suffer different restrictions. The
number of state variables is now enlarged, the problem is more cumber-
some, but there seems no reason why, with the requisite labor, it could
not be solved.

Let us now turn to the payoff. It was supposed, in the early version,
that there was a theatre of effective war detached from the attrition
activity. In each time unit—for example, a day—each combatant assigns
part of his weapons to this theatre, and they alone score in the payoff,
The measure of merit for each side is the cumulative total—say the number
of weapon-days—that he can deliver during a stipulated period of duration
T. The payoff is the excess of these measures,

[0 wm-a-pana (1162)

so that each side strives to get a bigger weapon accumulation than his
opponent.

Another payoff would be simply the excess of extant weapon at some
given future time T. It would be terminal with H = x, — ;. The
desideratum here would be to store up the greatest possible excess in
reserves of weapons over one’s opponent; the effective war is in the
future, rather than concurrent with the attrition.

One weakness is such payoffs is apparent at once; we have to know the
duration T of the war beforehand. With what reliability can T be estimated
and what is the penalty of error? Should a revision of this estimate occur
during the conflict, the format of our theory makes the consequent best
alteration of the optimal strategies easy and natural.® The consequences
of a bad initial estimate will be softened thereby, and we should be able
to assess how much by calculation.

Still another type of payoff assigns different values to the weapons
depending on the time of their entry into the main war. (An airplane
delivered early gives more service than a late one, say.) Such amounts to
inserting a factor, say F(¢), into the integrand of (11.6.2). If F(¢) approaches
zero sufficiently rapidly with increasing ¢, we can replace the upper limit
by co. Here then is a payoff independent of any prior estimate of the
duration T. It expresses the surplus of the total aircraft value; the price
is the obligation to choose the valuation function F.

If we did not know T, but somehow felt we know a probability distri-
bution for it, the payoff is of the form above with F() being the pro-
bability density.

® For Titself is a state variable, and the optimal ¢ and y are always functions of such.
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The most rational payoff would be based on a detailed analysis of the
main war, generally a much harder problem than the present one. If we
could express the Value of this war in terms of the delivery of distributions
of weapons by the two antagonists, this functional would be the logical
payoff for the present game.

But, among simpler payoffs, the imaginative reader will perceive many
more possibilities, both of the genre we have described and others. The
important point is not so much their realism or estimability, but whether
the solutions—both the Value and the strategies—have traits essentially
independent of the choice.

Let us now turn to the analysis we have actually done: Examples 5.4
and 11.9.1, the latter being placed later in this chapter to avoid inter-
ruption. In the former example we find essentially simple strategies. Let
us recall that ¢; is a measure of the destructive power of E’s weapons:
one such weapon, when used for attrition, can cause a reduction of ¢, of
P’s weapons per unit time. For P, ¢, is similar and we have supposed
¢, > c;. Then the optimal strategy for E, the player with the better
weapons, is all-out attrition until a time 1/c, short of the scheduled end
of the conflict followed by an abrupt switch to all-out attack.

What does this mean? The 1/c; can be interpreted, in an average sense,
as the time required for a certain number of E’s weapons to destroy a like
number of P’s. Thus we can attach a certain reasonableness to the
criterion. When there is a greater time remaining than the above, E has a
favorable exchange rate: his weapons have sufficient time to eliminate
more than their number of the enemy’s. As soon as this ceases to be so,
it is advantageous to put all his forces into the direct war.

But P, with an inferior weapon, makes a similar switch earlier.? He
waits until a time which precedes the scheduled termination by

1 J2eife, — 1.
G

Is there a heuristic interpretation here? This result seems to transcend,
at least superficial, intuition. Of course, we should expect greater com-
plication. For P, when making his decision, must anticipate the optimal
behaviour of his opponent, which entails a strategy switch during the
time remaining. On the other hand, when E calculated his best time to
change, he could count on the later persistence of P’s simple course of
always fully attacking.

Note that these strategies do not depend on the manufacturing rates

® We are ignoring the curved part of 7, (Figure 5.4.2), where P switches earlier in
anticipation of a weapon annihilation.

.
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my, my nor on the strength of the respective forces, z,, z,, but only on the
efficacy of weapons. Such, of course, is not true of the Value.

By way of contrast, note the metamorphasis of the optimal strategies
when we change the assumptions in the kinematic equations as we shall do
in Example 11.9.1.3° Effectively the innovation is that ¢, now means the
fractional, rather than the absolute, rate of depletion of P’s weapons by
one of E. Similarly for ¢,.

We find that, with certain limitations, E makes his transition from
attrition to attack at time 1/c;x, before the end. This criterion is rather
like the one before and admits the same interpretation. But now the
transitions no longer occur consecutively, for P utilizes, under different
circumstances (see Section 11.9 for the details), the analogous T = 1/c,,.

But more interesting are the universal surfaces. Again, under certain
conditions, E (and analogously for P), before he reaches the strategy
transition, should endeavor to hold P’s forces at the level

(11.6.3)

He plays all attack or all attrition depending on whether z, is below or
above this value. Once 2, is there, E splits his efforts in the ratio

Y= l/xz\/;’;/:';

to maintain the state (11.6.3). He does so until T =1 /\/ myc;, whence he
switches to all attack.

What does all this mean?

The next major step in a constructive program should be the study
of the Value. How great are the penalties for deviations for the strategies
just described ?

Xy, = \/ml/él.

11.7. THE BATTLE OF BUNKER HILL

The general setting is of two approaching antagonists firing at each other
meanwhile. Each being constrained in the amount of available ammuni-
tion, the problem is to find the best distributions of their firepower, As the
hit probability decreases with range, it increases during the approach.
Firing too early then spells a probable ineffectiveness; firing too late
allows the enemy too many unhindered shots.

Again we have a situation redolent of basic or classic military theory.
The particular realizations are, of course, numerous. We can think of
nearing ships or naval task forces, as interceptor closing in on an armed
bomber, or, as our historic title suggests, of two bodies of infantry.

10 The reader should glance over this example now to make the following paragraphs
intelligible.
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Analyses of such problems are not new. Duel games, in the simplest of
which the two duelists approach each other, with a single shot pistol, date
from the beginnings of game theory. The ideas have expanded from here
to multishot and silent duels,”* etc. and to cases of continuous fire, as the
machine gun duel problem of John Danskin.!?

We shall study from our present standpoint and partially solvF such
games where the antagonists are corps which become partially decimated

by the enemy’s fire. ' . -
One of the purest versions of such games has the kinematic equations:

& = —xyeop(T)y
&y = —x101P1(T)¢

my = —c;¢
Mg = —Co¥
T=-1, 0<dp<I.

Here z, and =, are the numbers of soldiers in two approaching grmies,
which are firing on each other meanwhile. The time until the)( will meet
being T, the hit probabilities, p; and p,, are decreasing functions of .T.
The quantities m, are the (average) ammunition per man in the two armies
and the ¢, are maximal possible firing rates. Each side has the option of
firing at any rate up to these; taking the fractions as the control variables
gives us the third and fourth KE. '

The total number of bullets fired per unit time by Army 2 (that is E,
the minimizing player) is thus z,c,p. On the average we will suppose that
the fraction py(T) of these hit their mark; the total which do is the rate of
decimation of Army 1. Such accounts for the first KE, the second
following symmetrically.’®

Observe the precise meaning of p,. Its reciprocal is the average number
of bullets needed to kill one enemy, a quantity which we suppose to
decrease as the armies get closer.

The game terminates when the armies are close enOl.lgh for.the abpve
approach phase to be no longer a valid description. With a suitable time

11 See the account in Reference [10].

12 Reference [11]. L .
13 The total bullets in Army i is z;m; and the rate of change of this is &,;m; + ;.

The first term is the effect on the firing rate due to the firers being decimated. We have
neglected it, on the grounds that in a reasonable battle it should be small compared to
the second term, the rate due to weapon use.

To take this effect into account is not hard. We form differential relations, as thg above
KE, and solve thern algebraically for the <;, r; to get our final KE. The results is more
cumbersome in form than what we are using.

L
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scale such occurs when 7" = 0, which is taken as defining €. Of course, &
is the set where all five state variables are nonnegative.

The best firing schedules (strategies) depend on what is chosen as payoff.
Because the decision is typical of the quandaries facing the military analyst,
let us look further at this instance.

One (cold-blooded) choice might be the difference in the number of
surviving men. Such implies that we take

H=2z,— 2z (11.7.1)

But note that our solution will reflect the choice. We should not be
surprised if one or both sides arrive at the fray (after the approach)
devoid of ammunition. For (11.7.1) puts the objective in terms of sur-
viving men only; then, to optimize, each side will clearly want to use all
its ammunition, if there is enough time (7)) for it to do so.

To remedy the unreality of such an analysis, we might use as payoff the
surviving excess firepower. That is, we take

H = myx, — myz,. (11.7.2)

If the surplus of men and the usable ammunition are both important,
we could use for H a weighted linear combination of (11.7.1) and (11.7.2).
But the weights (coefficients) are a result of a judgment, and we cannot
expect the solution to be better than its validity.

Again, it might be that Army 1 is defending such a vitally important
target from the invading Army 2, that the men of the former are expend-
able in comparison. Then both sides would be interested in the men or
firepower that breached the defenses. Thus a suitable H would. be z, or
myxy.

But there is only one strictly logical way to choose a payoff. We should
consider the encounter which arises after the approach of the two armies
and analyze it first as a separate problem. Its Value can be expected to
depend on the z; and m, which were its inputs. Then this function of these
four arguments should be the H of our original game.

Suppose now that H depended only on the z,, such as (11.7.1). Observe
that if the third and fourth KE were deleted, we would have a self-con-
tained differential game with the state variables: z,;, ¥y, T. Its solution
would entail § = § = 1, for clearly the players do best by full firing at all
times. But then our purpose, which is to find the best usage of a limited
amount of ammunition, is lost. The role of the above two KE then is to
supply these conservation constraints.

We shall partially solve two cases with payoffs (11.7.1) and (11.7.2).
Both appear to have elaborately variegated solutions, and to avoid a
gallimaufry of special cases we shall try to simplify. In both, we shall ignore
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the bounds on the #,. This allowing of negative numbers of men is not ag
absurd as it sounds. First, it is likely that in the cases of realistic interest,
annihilation of neither side will occur; in fact, reasonable ranges of the
variables will likely bound us well away from such a possibility. Secondly,
the solutions obtained will be parts of the full solution. To extend them
we need but add new components to % on which a requisite variable is
zero. Let us, say, adjoin %,, defined by 2, = 0 (and also #, > 0; other
state variables > 0). The subsolution in %, is trivial: the extinct Army 1
(P) cannot fire and E certainly will not; then ¢ = ¢ = 0, and to find V'
on %, is trivial. We use it as an H with which to construct retrograde
optimal paths emanating from %, back into &. The solution is completed
by merging paths of this type with those of the unconstrained solution.

When we use the firepower payoff (11.7.2), we shall also ignore the
positivity of the m,. It has already been explained that such would be
absurd for H =z, — =, but it is permissable in the present case on
grounds like those of the two preceding paragraphs. It is not likely that a
side will exhaust its bullets to attain a good payoff expressed in terms of
them. If we wish to study such cases we can adjoin auxilliary € as above,

For reference, we write out the ME and RPE relative to the foregoing
KE.

A1$ + AP —Vp=0 (ME,)

where
A4, = —c@p Ve + Vy)
Ay = —cy(@pVy + V)
and
_{1ifA1<0 __ [1ifAd, >0
“loifa, >0 YT {OifA2 <.

while the RPE are

Ty = XpCaPoP W= —51P1V2$
]
Ty = xlclpl‘z; V, = —Copa V1P

r?ll = Cl$ Isvs = 0
n°12 =3P IZ =0
(o] o]
T=1 Vp = —Cypy 'V — CaTaPy' V1.

Example 11.7.1 The Battle of Bunker Hill: firepower payoff. We take as %

B=85, m=s, T'=0

. Ty = 8, My =5,
and, from (11.7.2),
H = 5,5, — 5,5,

W .
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Completing the initial conditions, as usual, by

v,= ¥
0s;
we have, on %,
Vi= —s,, Vs=—5
V2 - S4, V4 = SQ.

and so, still on %,
Ay = = [s,p1(0) — 1]

Ay = Co83[—53p2(0) + 1).

There is full or no fire at termination depending on the signs of the
brackets. Thus P, say, near termination, fires fully (§ = 1) when s,(= my,)
> 1/py(0) and not at all in the reverse case. When ¢ = 1, the test of
Section 7.10 shows a void and there will be a universal surface.'* We have
not calculated it—a proper five-dimensional affair—but shall reflect on its
significance.

It consists of those states at which P should exert such a partial rate of
fire so that at termination m, = 1/p,. This means that the enemy (E)
soldiers each have (on the average) just the number of bullets which would
give each P-soldier the capacity to kill (on the average) just one man.

An odd criterion? We should recall that this model depicts a sort of
contest in the economy of bullets; each side expends them such as to have
the maximal surplus in the end. The theory has furnished a criterion for
doing so which does not appear obvious. (Of course, we recall that it
embraces more states than just those of the universal surface; one side
full fire, on the other none, until the US is reached.) Does it have a direct
interpretation ?

But the above type of action probably lies outside the range of practical
interest. The one-man kill capacity implies that the approach phase was
so long that it paid E to expend nearly all his ammunition during it;
such would be expected to hold only in rather extreme cases.

The more realistic states, we should judge, will lie well on § = 1 side of
the universal surface. Then the partie concludes with full fire. Were this
preceded by a no-fire phase, we should have a corroboration of Warren’s
command. That itis actually the case, under reasonable circumstances, will
appear from Lemma 11.7.2, later in this section. For simpler analysis, we
have assumed p, = p,, and the remark that will follow the proof shows
that the conclusion is a likely one in practice.

We have not computed the transition surface shown to exist. But, at
least, when p; = p,, this could be easily done with the aid of Lemma 11.7.1,

4 It is not hard to show that if § = 0, no ¢ ~ US can exist.
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the preceding 4,, and the initial conditions. The surface would consist of
those states when the “whites of their eyes” are visible.

Finally, it is likely that the full solution will embody a universal mani-
fold for both players, that is, one to which both will steer. On it both
control variables will assume intermediate values, say $ and 9, and it can
be expected to be of lower dimension (< 4) than a surface.

Because we have developed no general theory for such manifolds and
have no grounds but instinct for asserting the existence of one in this game,
the following must be regarded as spectulative.

Along a path on such a manifold, the intermediate control variables
require that everywhere A, = 4, = 0; then from the main equation, also,
Vr=0. The time derivatives of these three quantities also vanish.
From A4, = 0, we have, using the RPE,

CaP1Pap(@aVy — 2, V1) — py'(ayVy) = 0 (11.7.3)
and also I;I' = 0 gives, directly from the RPE, for some A,
Vi= —lczp/
Vo = Aegapy'.
Substituting these into (11.7.3) and solving gives us
czxzzl’l”Pz'

c2p1p2(clx12p1l - szzzpzl) .

P =

The analogous expression for ¢ is obtained by exchanging the indices.

Writing ¢ and i into the (left) RPE, we obtain a system of differential
equations in the state variables. With a proper set of initial values, their
integrals may give us our universal manifold.

Of course, final and more comprehensive statements require a more
extensive analysis than we have undertaken here.

Example 11.7.2. The Battle of Bunker Hill: manpower payoff. The version
with payoff being the excess of manpower at termination H=12, —x))
would apply to cases in which the events succeeding our battle of approach
do not depend on the munition supplies.

Our treatment again shall be partial. We shall assume one side has
enough bullets for continual fire, that is, § = 1 always. Thus our problem
will concern only the best distribution of the opponent’s limited fire and
so will be a one-player game.

This is not as drastic a limitation as it at first sounds. First, our
limited problem is a good one in itself: how, for example, best distribute
a small fusillade from heavy weapons against an approaching enemy who

.
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maintains a light but steady barrage at all times, the accuracy of fire in-
creasing with time for both sides? Secondly, its solution covers most of the
essential facets of the complete case. If the opponent always does not fire
(% = 0), the solution is trivial. Thus both steady possibilities of the
opponent are covered. If the roles of the players are reversed, then the
only features of importance omitted are possible universal manifolds of
small dimension, where both players use intermediate values of their
control variables and simultaneous transitions of them.

Our problem now has one control variable, ¢. The state variable, m,,
can be suppressed; it plays no role. The KE are obtained from the
previous set by placing ¢ = 1 and dropping the fourth one:

% = —zzczpz(T)
Ey = _'9:101171('11)‘?S
Ey =My = —c1

T=—1.

The ME is
Ad — CoapoVi — Vp =0

1(4 < 0)
0(4 > 0).

The RPE are the same as before if we drop the fourth entry in each
column and replace ¢ by 1.

The universal surface for these KE has been computed in Example
7.9.2.

We will also need the readily computable result

where A(= old 4,) = —c,(z,p,Vy + V) and ¢ = :

o

A=— M

, 11.7.4)
where M = cyp\poasVe — 2, V1) + 2y Vopy'. (

If P has enough ammunition to last until termination, his optimal
strategy is obviously steady full fire: ¢ = 1. We are led to something like
Example 7.14.1, in which the surface bounding such cases (see Figure
7.14.1) will probably act as a semiuniversal surface. Therefore we will use
this surface as a terminal one and call it %,. It is characterized by there
being just enough ammunition to last until 7= 0; we parametrize it:
€, x =5

Ty = 89
Xg=my =¢85 18
T=s.

15 Because of its prominent role, we write s for ss.
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There is another significant terminal surface. It may be in some cases
optimal for P to do all his firing early and exhaust m, prior to termination.
We encompass such a possibility by the terminal surface

gg: =5
) Ty = S,
m; =0

T=s.

We shall treat %, first. To ascertain H on it, we see how play will pro-
ceed from a typical one of its points. We obviously construe m; = 0 as
implying a mandatory ¢ = 0, and =, and z, will satisfy

By = ZaCaPo(s — 1)

By =0

(11.7.5)

and z; = s; when ¢ = 0. Thes — ¢ appearing is T when it starts from the
same point, (sy, 53, 5) of €,. The sought A will be the value, as above, of
%3 — #; when ¢ = 5. The above system integrates to
11
Ty =85 — Czszf po(u) du
s—t

Ty = 5,
and so

H= s2(1 + czf po(u) du) — 5.
)

Our usual method then gives on €,
Vi, =0H[0s, = —1

V2=1+62fp2
0

Vp = 52¢:p4(s)-
Putting the initial conditions in the ME, it becomes
Ad = 0.

If there are to be paths entering %, they must do so with § > 0 and
s0 A = 0 at such points, and consequently

Vy = —slpl(s)l:l + c2f pz:l < 0. (11.7.6)
0

These tributary paths into %, can exist, as 4 = 0 there, only if 4 <0
or if
M = M(s, s,,5,) > 0.

LT N
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From (11.7.4), we find that

M = ¢;pi(s)po(s) [sz(l + ¢ ﬁ sp2) + sl] + 5 (1 + czfospg) 1 (s).

s & After evaluating this function on %,, we will have tributary paths when

a g e 3 M > 0, that is, such will be states where P optimally concludes firing, and

= = \8 we should expect singular surfaces to emanate from the boundary where
M = 0.

M<oO
M>0

Pi'(0) < 0, as the p, are decreasing).

If J < 0, then, for small 5 (near termination), M > 0 and there will be
cases where P should do all his firing early. If J > 0 such tributary path
play occurs only when the force ratio s,/s, is larger than J. Thus for a
certain subset of cases (near %, with s small and J > 0) P should fire early
when his force is smaller than that of E and late when it is larger. To have
J > 0 roughly means that P’s firing accuracy falls off rapidly with range
when the forces are close and ¢,, E’s rate of fire, is small. (We neglect the
effect of p,(0) which should not be too far from 1.)

Due to the four-dimensional &, we shall restrict our graphical depiction
to the (m,, T) plane. In such a diagram, the paths with § = 0, where my

Whens =0
& M = ¢;p,(0)p,(0)s, [? - JJ (11.7.7)
1
\ where J=_—PO _ 1
e N expi(0)p(0)
3 and the solution depends rather critically on the sign of J (recall that

3=
M>0
M<O0

my

<

my

|«
Figure 11.7.1

& &
s o ) o does not diminish, are horizontal, whereas if =1, they have the fixed
= - \g/ e /E\ slope, —c;. In Figure 11.7.1a, %, (rather, a section of it) appears as a line

of the latter slope through the origin; to the left is the region of surplus
my, where § =1 always. A similar rendition of %, lies on the T-axis,
where m; = 0.
B There should be a distinct such chart for each value of (51, 55), but they
are not cross sections of & for a fixed (,, ,) because the latter changes
value during a partie. Nevertheless, each play of the game will be ac-
companied by a moving point on such a chart which ultimately reaches
€, or %,.

At (a) and (b), M > 0 for small s (= T when my = 0). If for some
s (= Ty), M changes sign, the diagrams suggest that the strategy switch
might entail a transition or universal surface. Similarly, if M < 0 at
small s; (c) and (d) indicate that a sign change generates a transition or
dispersal surface. Thus it becomes important to study M as a function
of s.

TS

I<——M>0
I(——-M<0

my

LI
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We shall not do so here meticulously. We shall suppose

pL= ps=p(v) = ae ™

with 0 < a < 1, k > 0. No versimilitude is claimed for such probabil-
ities; they merely fulfill our requirements (p, < 1 and decreasing), yet
lead to simple calculations.

Then
J = -—k— —1

and

et o) o )

The roots on the right are at p = 0 (s = 00) and

_ sil + csafk) + 25y & (s + caafk) + 259"
P 25acolk

Clearly, the latter two are positive. To correspond to a positive s, root < a.
It is not hard to show that such cannot happen for the larger root, and for

the smaller it happens if and only if

ﬁ>(—k——1)=J.

s; \ega

Thus, if either

J <0
or s7>0

51

M > 0 for small s, but will change sign; one of (a) and (b) of Figure 11.7.1
will occur. To know which requires still further analysis, which will not
be set down here. The criterion is the sign of M at when t =0, s =T,
and such involves ¢;, which has not appeared in the preceding criterion.
Our own incomplete evaluation seems to indicate that either the transition
or universal surface could appear.

In the event of the latter, if Lemma 11.7.2 applies, there must still be a
transition surface for the § = 1 paths; such as indicated by the broken
curve at (b).

But if s,/s, < J, M < 0 for all s. Then (c) and (d) cannot occur; the
horizontal paths persevere rightward of %;. Here is pristine validity of
Warren’s command; P witholds fire completely until the last instant that
permits its exhaustion.
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The analysis for , parallels that for %» In place of (11.7.5) we use

&) = —xycypp(s — 1)
&y = —Zeypyfs — 1)

but from here on the procedure is the same. There is a new M, but it

agrees with old when s = 0. Thus the criterion near the origin is just as it
was,

There seems grounds for plausibly conjecturing (our analysis is too

incomplete for certainty) that the conclusion of tw '
holds generally: © peragraphs back

Warren’s command is valid if

T2 < LI(O) —
z an0p(0)

!Sut, of course, our partial analysis indicates that the full solution will be
quite complex. For instance, if there is a universal surface bordering on
%1,.1t would entail firing programs of consecutive phases such as, first, a
period of no or full fire (tributaries), second, partial fire (on thc’: Us ,in
accord with (7.9.19), and third, full fire (on %,).

We conclude with the two lemmas cited several times,

When p;, = p, (= p) the RPE can be integrated in closed form under the
full fire case when § = ¢ = 1. The result is immediately extendable to the
case where p,(T) and p,(T) have a constant ratio, but when they are
essentially distinct, we are led to a form of Ricatti’s equation.

LEMMA 11.7.1. The integrals of the system
‘;7)1 = ¢a%yp(7)
’?2 = ¢,2,p(7)
with initial conditions: =, = s, are
B=0,0+a Q!

2= 6,0 + B0 (11.7.8)

where

0 =060 = exp (yaa [ pw au)

and

1
ar = 5 (s, % Szﬁﬁ)

O]

.
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If the ¥}, with the same RPE, have the values S; when J = 0, they are
also of the forms (11.7.8) but with

ai=§&¢&ﬁﬁb
ﬂi=§&¢SMaa.

The proof is, of course, direct.

Suppose at some late stage in the game, d=79p = 1. We want to know
if there are transition surfaces so that earlier § or § was 0.

i i i = p, (= p), there is

LEMMA 11.7.2. If, in the Bunker Hill game with p; = p, (=p .
a set of points S at which § = ¢ = 1 and ¥, < 0, then at some earl‘xer
time the paths through S will have met a transition surface preceding which

¢ = 0, provided that either
) on p(7) dr exists or
0
@ P~z Tow

and 2a\/cic, — 1 < 0. (11.7.9)
Proof. The value of ¢ depends on the sign of A,, whic}'l 'by hypothesis

must be negative at S. We are to show that it becomes positive for large .
From Lemma 11.7.1

4y = —c(p(DkQ* + OD] + S5) (7~ )

for some constants k and S, the latter being the value of V5 at a point :,
the KE informing us that ¥V} is constant along a path. The form of the

. b et . . on of 7.
bracket is due to Q’s being an increasing function o
As S; < 0, if the term preceding it becomes small enough for large T,

our result is attained. Such happens under (1), f01" o bec':’omes constatnt
and p, zero. Under (2) we are interested in, where k' and k” are constants,

2 exp 2\/cici(k’ + alog7)
T _
— k,,Tza\/ ¢16a—1

so that (2) implies our result.

Let us note that, in three-dimensional physical space, the hit prob-
abilities diminish, for large ranges, inversely as the square of the range.
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If the range in our game decreases lineally with time, we will have

1
) =0(3)
so that (1) will hold.

In the less likely case of two-dimensional aiming (2) will apply, and the
validity of Warren’s command would depend on the truth or falsity of
(11.7.9).

Let us further note that the hypothesis Sy = ¥, = 9V[0m, < 0 can be
counted on. Because Army 1 is minimizing, we should expect the Value to
be smaller the more ammunition he has,

11.8. SOME PITFALLS IN ADAPTING
GAME THEORY TO WARFARE

In the application of a mathematical theory to a practical science there
are certain unavoidable limitations. Such general derelictions hold when we
utilize game theory as a military tool as well as some peculiar to our subject.
We list

1. An optimal strategy is, by its nature, the best possible, but it may be
complex and the practical gains over a simpler, more obvious competitor
slight. Such is a common phenomenon in many reaches of applied mathe-
matics, but in game theory there is the innovation of an intelligent (at
least so postulated) opponent. We must ascertain whether he can seriously
exploit a deviation from an optimal strategy.

2. There are instances when we have assumed knowledge on the part of
a player of certain parameters which he might not have in reality. (Note
“parameters,” a different affair from not knowing the opponent’s state
variables. The latter situation occurs properly in games of imperfect
information and will be discussed in the next chapter.)

3. Let us recall the von Neumann definition of the solution of a zero-
sum, two-player game. When both players utilize optimal strategies, the
payoff will be the Value. But if one player plays nonoptimally, there will
exist a strategy of his opponent enabling the latter to do better than the
Value.

There are cases when the only such existing counterstrategies are non-
optimal for the opponent. Then what is he to do? To exploit the defection
of the first player, the opponent must play nonoptimally himself and so
€xpose himself to a similar risk.

In differential games, fortunately, this phenomenon generally does not
occur. If one combatant acts optimally and the other does not, the latter
automatically suffers a penalty.

-
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11.9. WAR OF ATTRITION AND ATTACK:
SECOND VERSION!$

In Section 5.4 we investigated a war game in which the control variables
# and y were the fraction of his weapons that a participant devoted to the
destruction of his enemy’s weapon production. His remaining weapons
were devoted to the theater of war proper, and it is these alone that
contribute to a favorable payoff.

The solution showed that if, say, P acted optimally, ¢ was at first 1 (all
weapons used for attrition) and then at some definite later time he switches
to ¢ = O (attack with all weapons). No intermediate weapon allocations
were ever employed. They are in the version below, revised slightly
toward more complexity and better realism. As is generally true with
linear vectograms, the agency is universal surfaces.

Our new KE will be

&y = My — CYPTT,
dy = My — CoP@Ty, 0<¢yp<1
T=a=—1
with, as before,
G=(1—ypz,— (1 — ¢,

As in the earlier version, ¢ and y are the proportions of their forces that
the combatants devote to the long-range purpose of destroying the enemy’s
forces at their bases. The residual fractions, 1 — ¢ and 1 — v, enter the
battle proper and contribute directly to the payoff. When ¢ orp = 1, we

will thus speak of attrition; when it equals zero, of attack. The innovation
here lies in the final terms of the first two KE and was discussed in
Section 11.6.
As in the earlier version, & is
2,20, 2,20, >0
and € is
=520 =520 =0

Again it seems inadvisable, at least at first, not to bother with the
maintenance of z,, z, > 0. In fact, we shall not push the solution to
exhaustion but shall be content with exhibiting its novel and important

aspects.
The ME, is

mVy + myVy— Vg + 2 — 2, — 2,519 + 2,59 = 0

16 I jkewise posed by A. Mengel.
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where Sy = Var, — 1, Sy =~ Viz, — 1.
Thus, clearly,
={l if §>0 _ 1 if §,>0
0 if S,<0°’ ‘”"{o if S,<0°
Turning now to the initial conditions, on € we have Vi=V,=0s0

that S, = S, = —1 and, as we should expect, ¢ = ¢ = 0, that is, all

attack and no attrition late in the wa °
r. Near €, th
superfluous) e RPE are (V; proves

o O

= —my, V= -1

o o

Ty = —my, I/Z =1

o

T=1

which have the integrals

xl = Sl - myT, Vl = -7
zg = SZ - Mgy, VB =T
T=nr.

Thus
S1=cpr(sp —myr) — 1 = T, — 1

Se=c17(5y —myr) — 1 = Tz, — 1. (11.9.1)

Thus transition surfaces occur on the h i i i
‘ yperbolic cylinders obtained b
equating the final terms of (11.9.1) to 0. Such surfayces, denoted by " 4
and ', have the appearance of Figure 11.9.1. The analysis thus far i;

Figure 11.9.1

..
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x2

ra

Vmg/Cp
0 T
1/ Vm1Ca

Figure 11.9.2

valid at most in the region behind their configuration as sketched (that the
subset of & for which
1
Tz, < 1 and Tz, < —).

Cg ¢
Not all of this configuration will be significant. F01: let us f:nvisage é,
for example, as projected on the (z,, T)-plane (thatis, aview of F.1gure‘ 11.9.1
from along w;-axis). The paths will appear as the oblique straight lines of
Figure 11.9.2, and .7, as an hyperbola. Let it be tangent to t.he paths at the
point Q. (Q is really the endwise projection of a line Q in £.) Clearly
only the part of 7, above Q will act as a transition surface because belpw
0, 7, will be met by none of the (retrograde) straight paths emanating

from ¥. '
A brief calculation shows that Q has the coordinates

T = 1N/ mycs.

i i i leads to a change
We can expect (and in fact can verify) that crossing 7, :
in ¢ from 0 to 1, and so on the right side of 7, one of the RPE will be

replaced by

(11.9.2)

Ty = \ myfcy,

[
Ty = —My + C3T1%3.

Except at the boundary (z; = 0) the final term will be positive, and the
paths emanating on the right of 7, will have greater s}ope than our former
straight paths. Thus there will be a void just to the right of Q, and we act
on this cue to seek a possible ¢-US. .

As on the straight paths, ¢ = 0, the universal surface will be sought on
this premise. (Further, our criterion for a ¢-US shows that none can exist
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when y = 1.) The analysis was done in Example 7.9.3, and we found
there the very appropriate candidate (7.9.23):

Ty == \/m2/6‘3.

Such is a plane through Q; of course, we utilize only the subset lying to
the right of Q where

T > 1 mye,
To navigate on this plane let ¢ be qf Then from the second of the KE

Z=0=m; — Cz‘zzn/m
or $ = (1/z)\/myc,.

As our constraints require ¢ < 1, the universal surface is confined to

(11.9.3)

B, > /myjc,. (11.9.4)

Our thinking will be simplified if we temporarily convert the situation to
a one-player game by taking y = 0 always. In particular, we are disen-
cumbered of J,. We are then dealing with a situation in which E attacks
directly only, that is, he does not endeavor to destroy P’s resources.

The universal surface appears as the quarter-plane BAC sketched in
Figure 11.9.3. The tributary paths, as we already know generally, will
merge smoothly with the family (¢ = 1) emanating from 7, and with the
family (¢ = 0) coming directly from €. The paths on the surface itself are
sketched in the figure.

Let us interpret matters from our present state of knowledge. If ter-
mination is still far off (Tlarge), and his forces not too small ((11.9.4) holds),
Pshould attack (§ = 0)if his enemy’s forces are below the level /. m and
do so until they rise to this level. But if they are above, his strategy
should be attrition until they are reduced to v/, myfc,. When z, = +/, m_z/c—z,
P holds it there by mixing attrition and attack in the proportion (11.9.3).
He perseveres in this policy until the time 1 [N/ myc, prior to termination,
when he switches to full attack.

But against a large enemy force and with not too great a time to go, P’s
attrition policy will attain 77, and he switches to attack when this time
T = 1/cyx,.

These ideas are again illustrated by the cross-sectional diagram of
Figure 11.9.4,

What happens near the hiatus bounded by QA4Cin the preceding figure ?
We shall show that there is a dispersal surface meeting it.

L
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x1

Figure 11.9.3

Relooking at the KE with ¢ = 1 (and § = 0):

x°1 = —nm (1)
By = —my + Tz, (2)
P ®

let us construct initial conditions on the universal surface near AC. For an

x2

NG

Figure 11.9.4

0
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initial point on AC itself (2) shows that for + = 0

Ly = \/mz/cza iz = —my + Cz(\/mz/cz) \/mz/cz =0

%’c; = c2(x1£2 + 5317"2) = —czmlx/mz/cz <0
so that the paths, as they leave AC descend like 2. From starting points
near AC, the paths will at first rise (£, = —m, + cg(\/ myfcy + &) N myfc, =
small and positive), then, by continuity, descend at this kind of rate.
(One is sketched in Figure 11.9.3.) Thus they will meet the straight paths
emanating from the lower side of the universal surface. From .7 1 near
AQ, as z, is still smaller, the paths will descend even faster. Thusa dispersal
surface can be constructed (Section 6.5) by equating the ¥ on the two sets of
intersecting paths.

Now let us restore the two-person game. First it will be convenient to

know a little about ¥ on the universal surface. We describe the latter by
fresh parameters:

T =85 2 Vmyfc,, % = \/mz/cz, T=s5> 1/\/”1202-

Then we can show fairly routinely that on it

Vi=—s8, V= 1/\/’"26'2’ Vp= 2\/’”2/"2 — S8y — MySy

and also
Se= —c Vit — 1 = ;8,8 — 1

and the surface is only acceptable in the two-person game at points where
§; < 0 as its construction was premised on ¢ = 0. This means that we
must discard all of it except the portion which lies behind .77, which has
the equation ¢;z,T = 1. The boundary is indicated by the dashed curve
in Figure 11.9.3.

We have no assurance that 77, aside from this dashed curve, will play
its former role. What we must do. is to evaluate S, along the tributary
paths from the residue of the universal surface and ascertain the set of
points on which it vanishes. Doing so for the paths below the surface is not
difficult; we find the old 7, still in business. But the paths from above
lead to differential equations recalcitrant to elementary methods, and we
have not pushed matters to completion. Our conjecture is that S, becomes
zero but on a surface not 7 ,.



CHAPTER 12

Toward a Theory with

Incomplete Information

12.1. INTRODUCTION

The value of extending our theory to games of incomplete ir.lformatlor},
for military and other applications, is clear. But the achleyement is
difficult and until recently little progress has been made. Th1§ chap_ter
largely sows seeds rather than reaps _results. It portrays'the dlfzilcultlest,
conjectures what solutions would be like and seeks to delineate the mos

ising ways of attaining them. . '

PNI)IIIH tlhe tgollox):/ing section if the first glimpse of the inevitable mtrodu;:tlon
of mixed strategies. As in the standard theory pf the zero-sum, two-p'al)l'er
game, such consist of a player’s decisions pemg made in agcm_‘d wit ‘ai
definite probability distribution. Justhow this sh.01.11.d.be donein dlﬁ'erenti)a
games is not obvious. The most likely poss1.b111t1es are sugg.e'sted fy
realistic prototypes of the games. After a tentative general deﬁm.tlon ofa
differential game with incomplete informatxgn, we turn to specific t}'%);s
using as models some actual instances of ﬁr}ng a:md pursuit games. The
search game, as one with minimal informgtwn is termed, often appears
likely to furnish a constituent of the solution of more general cases.

Search games constitute Sections 12.3 and 12.4. _ In the. first, we prove
that when the hidden objects are numerous and 1mmob11e,’ the time to
find them (the payoff) is nearly independent .of the searcher’s strateg%hgs
long as no effort is wasted researching territory alr.eady scout.ed.‘ . ;S

striking result, as far as we know, is the only one definitely establishing t:
practical validity of approximate methods, an a'pl.)roach we feel has grea
possibilities. This cause is argued in some detail in Section 12.6.
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Section 12.4, on search games with mobile hiders, again takes us to an
unexplored realm. We conjecture here that the details of the randomiza-
tion are unimportant, but certain basic parameters, such as the hider’s
speed, are not. Again there appear to be grounds for an approximate
theory.

For certain games with a “stationary” or “steady-state” character there
appears to exist a technique for solution, albeit a tedious one (which might
be alleviated by approximation). It is expounded in Section 12.6 and
exemplified by a firing and evasion game.

122. A SPECULATIVE PURVIEW

One of the main difficulties of differential games with incomplete in-
formation is that undoubtedly optimal play will, in all essential cases,
require mixed strategies. What form will they assume in a differential
game? A mixed strategy customarily means the randomizing of a player’s
decisions in accordance with some probabilistic law. Just how is a player
to randomize his choice of control variables, quantities which he controls
continuously ?

Whatever the nature of the strategies, there is a basic distinction from
games with full information. Generally strategies can no longer rest on the
concept of the control variables being functions of the state variables,
that is, a player’s decision depending on the current position only. With
partial information his knowledge of the past states will generally motivate
his current decision.

The form of the information enjoyed by a player will be a probability
distribution over the state variables at each instant. As full knowledge is a
particular such distribution, the games with complete information,
discussed heretofore, are special cases.

There are two sources of this information. Some is granted, that is,
furnished! by rules of the game which may be formulated for this purpose.
For example, if the game were modeled on a physical situation in which
one player obtained knowledge of his rival through an imperfect detection
device, the rules might be designed to simulate the imperfection by supplying
him with equivalent granted information. Each player must also be
granted some data as to the starting position; the most general form is a
probability distribution over &.

There is also inferred information. A player will know the full history of
his own control variables? and he can infer from it more than the granted
information.

! The case where no information is furnished is not excluded.

# Such is usually the case, but there are exceptions. For example, if one “player”
is a team whose members are in imperfect communication.

-~
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Example 12.2.1. Let the kinematic equation be
E=2+4¢

Here P, controlling ¢, will always know the current value of z if he knew
its starting value 2° (by integration of the first KE); such is inferred
information. If he had only a probability distribution of 2°, at any later
time his knowledge would be this same distribution translated by a fixed
amount, which is always known to him via ¢(¢) through integration.

But if he knew y,, the starting y, all he could tell of y at time ¢ would be

Yo+ t<y<y+ 3

But there may be further rules of the game that supply him with a finer
knowledge; such would be granted information,

Of course, it is quite possible to have optimal pure strategies in cases of
only partial information. But in many of the more significant examples,
based to some extent on reality, it is intuitively clear that mixed strategies
are demanded.

Research Problem 12.2.1. Let us suppose a game of incomplete infor-
mation with one control variable apiece for the players and linear vecto-
grams. In the solution of the corresponding game with full information, ¢
and ¢ are to assume their extreme values almost everywhere in &; let us
say &, are the subsets of &, where ¢ = +1. Then, returning to a partie of
the original game, at some instant P will have available a probability
distribution, granted, inferred, or composite, for x over &'; he can then
always compute the probability that x is in &, or -, A plausible strategy
is to play, according to which is greater, ¢ = +1 or —1. Under what
conditions is this strategy optimal? (One might use Example 12.2.1, with
various €, G and H to experiment along these lines.)

For less abstract examples, let us consider pursuit games. As usual P
pursues E, E evades P, but each (or possibly only one) has incomplete
knowledge of the other’s position. Reality, especially the limitations of
actual sensing devices, suggests a number of forms for this incompleteness
(for definiteness we shall speak to P’s granted knowledge of E, but of
course all possibilities may hold reciprocally):

1. P may know E’s location (rather) well but may have little information
as to his other state variables (if there are any), such as heading and speed.

2. P’s sensing device gives him only a probability distribution of E’s
position.

3. Pmayknow E’srelative bearing only, that is, the inclination of line PE.
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. 4. There may be a time lag; P can act only on E’s position some fixed
time T ago.

5. P receives his information intermittently. (Suggested, of course, by

sweeping radar, but there is game-theoretical interest only if the interim

betwc;:en signals is great enough to allow E to maneuver significantly
therein.)

When no information?® is granted to either player, we will speak of a
search game.

We will discuss some possibilities indicated by some of the five categories.s
Let us take a simple cookie-cutter version of 2, that is, at each instant the
ox}ly.lnformation granted P as to E’s whereabouts® is that E is equiprobably
yvxthm a sphere of radius r. Ina discrete model, where the players alternate
Jump type moves, we might prefer to think of a chance move inserted
precec?mg‘each one of P. It would assign him his detection sphere by
choosing its center equiprobably in a sphere of centre E and radius r.

For.the moment adhering to the discrete version, the information that
P recelves may be as indicated in Figure 12.2.1a. The dots are successive
positions of E, but P only knows that each is equiprobably within its
containing circle.

Suppose there comes a time when two successive circles appear as at (b),

: '

Figure 12.2.1

i Exoept possibly some relating to the starting position.
* Our illustrations do not suffer if we leave E’s information about P unspecified.

® In a space whose coordinates are all the state variable rtaining to E (hi iti
and possibly his direction, speed, etc.). pe 4 (his position

-
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where AB is only very slightly less than the span available to E in his last
move. Then P knows that E must be very near B. This phenomenon need
not be uncommon. The special case where E is stationary will, in time,
result in something like (c) of the figure; if P waits long enough, with
probability one, he can infer as exact information as he pleases.

Thus the inferences of accumulated granted information may be much
greater than the current allotment. This type of phenomenon again explains
why a good strategy must depend on past states.

The opulent overlapping of spheres, as at (c), is in part due to our
stipulation that they are probabilistically independent. But what happens
if we take finer quantizations in an effort to approach a continuous game?
We would come ever nearer to certain determination with ever shorter
intervals, ultimately tantamount to no error at all, to a game with full
information.

A remedy for such an absurdity emerges if we look at actual con-
tinuous measuring instruments and the science of their errors, a part of the
theory of stochastic processes. Common in this subject are autocorrelated
functions which have small probabilities of large changes for small in-
crements of their arguments. Obviously a constraint of this type is needed
for realism in the continuous game.

There is an analagous unreality in strategies. It seems clear the optimal
play will be mixed in games with essential limits on information. Yet how
is the randomization of a control variable to be effected? At each instant,
to allow a player the choice of a value from an independent probability
distribution smacks of an absurdity similar to the above. For any
realistic model, the continuous choice, say, of a rudder position demands
that near successive positions be correlated whether the agent be man or
mechanism. Again, it seems, we must speak with a stochastic accent.

U. Grenander, in a splendid work of eighty-four pages,® has shown the
way. He deals with pursuit games which have a steady state character, and
the decisions of the players are proscribed by stochastic means such as
appear in prediction theory.

Let us return to the pursuit game and spectulate as to what the full
solution may be like. To illustrate possibilities we will make the artificial
assumption that r, the detection sphere radius, is constant’ and large in
comparison with the capture radius.

If the partie begins with the distance PE much greater than r, we can
expect the early play to be like that of the game with full information; P
will pursue the relatively small sphere as he would E and E will employ
corresponding evasive tactics. But with proximity, especially after P enters

¢ Reference [12].
? Instead of diminishing with proximity as would be likely in practice.
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the sphere, the lack of information will introduce a searching and hiding
phase. If we suppose a very high autocorrelation so that the detection
sphere is virtually stationary and that, once P gets within it, he so remains
without much sacrifice of agility, the ensuing play will be virtually a
search game with the interior of the sphere acting as &.8

This pure search aspect fits our pursuit game only if P has such great
kinematic advantage over E that the latter can be regarded as relatively
stationary.” But in other, and probably more general, cases P will be
obliged to divert some of his effort to keep up with the moving sphere.
Thus his strategy will be a mixture of pursuing E (say, by pursuing the
center of the sphere) and the random search as above. Similarly, £ must
blend an evading strategy with his random hiding one.

In any case, the search game will be a constituent, and we will discuss
such games in the next two sections.

Is the transition between the phases—the early pure pursuit and evasion
and the later one with a blending (or entirety) of mixed searching and
hiding—gradual or abrupt?

No.w let us ruminate on some of the other five types of partial information
mentioned earlier in this section.

If 3 holds, so that P only knows E’s relative bearing, again the knowledge
of E’§ position will accumulate with the passage of time. Were E stationary,
P, with sightings from only two positions, could spot E precisely by
triangulation. For mobile E, P will have a harder task, but how much so
will ccllepend on his knowledge of E’s kinematic limitations, especially his
speed.

We can readily envisage strategies of E deliberately designed to frustrate
P’s garnering of information. They will have to be random, of course, for
(once again) if P had a forecast of E’s locations he could triangulate on
them as well as against current positions.

Under 5, with P’s sightings intermittent, periodic, and widely spaced, we
can muse on the advisability of E’s mixing over courses equiperiodic with
the P’s sightings as in Figure 12.2.2. The deception ensues from P’s
spo?ting E only at the points marked by large dots.

Situations with a time lag 4 are commonplace. For example, feinting is

& At this point we can convince ourselves of the need for random strategies. In a
search game P. and E within a sphere &, suppose P had an optimal pure strategy. It
would direct l‘nm to search the portions of € in a certain order. But E being able, too,
to compute this strategy, need merely always stay in a part of € remote from P, Similarly
;fl:e c;ptxmal strat;.gy for E would supply P with an advance schedule of E’s positions.

ch player can only outwit the other through “mixing”’—pickin f i
routes through chance. £ EP g one of & variety of

9 Tl‘lat is, if we take coordinates centered at E, the motion of the sphere hinders P
but slightly and he is free to search it.

- .
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Figure 12,2.2

effective only when there is a lag between the opponent’s observation' and
his active response. Let us reconsider the earlier football examples with a
ball carrier E confronted by a tackler P. A feintby E,suchasa lunge to t!le
left, followed by a quick veer around P’s right, would .be futile in its
attempt to throw P off balance if the latter were capable of instantaneously
reacting to £’s movements. .

We have discussed a number of ways the players might move for the
sake of information—P to gain it, E to deter it—which almost alv.vays
entail randomizing and have suggested that, in pursuit games, optimal
strategies should be a blend of these type moves apd those of more direct
pursuit and evasion, resembling (at least) the optimal strategies were the
information complete. Now it is not certain that §uch w111'always be the
case. The former type of moves—those concerning mfo.rmatlon—gen(.erally
penalize the latter—those of direct pursuit and evasion. There W3ll be
instances when the penalties are too high—the example belc?w is an
extreme case—and another basic facet of the general problem is to find

criteria.

Example 12.2.2. The simple pursuit game. We revert to .Example 1'.9.1 in
which P and E move in the plane, each with simple motion, P havmg the
greater speed. The payoff being time until capture, we know tha:t optupal
play consists of P’s chasing E along the straight line through their starting
positions. Now suppose P has only information of type 3; pe only kr-lows
the relative bearing angle of E, not the range. But the bearlflg angle' is all
he need know to play his optimal strategy of the game with full infor-
mation. Obviously this strategy is best here, too. Neither player should do
ny mixing. ‘

: %,t woulc% be possibly advisable for P to veer off course to trl?,ngulate
only if the game were altered in such a way tha.t th'e extra mformatxf)n were
advantageous to him. We leave it to the imaginative reader to devise such
alterations.

Similar, but less extreme, ideas apply to our other cases. Fc?r example,
the oscillatory routes of Figure 12.2.2 will cu}"tgil E’s effective evasion
speed. With a payoff such as capture time, it is doubtful whether he

should employ them.
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But if we shift our thinking from pursuit to firing type games, the
situation changes. Here P is equipped with a weapon such as a gun
(torpedo, missile), and he may fire one or a succession of shots at E,
Let us first ignore any inherent inaccuracy in the weapon, so that P is
certain to score a hit if he knows E’s location exactly. The payoff is the
hit probability.

Then, as E’s only objective is to degrade P’s information, it is clear that
randomized strategies are essential. Similarly, P will have to mix, for any
set policy of when and where to fire would enable E to be not at target
location at the time.

A generic instance of such games of great practical importance illustra-
tive of these ideas is embodied in

Example 12.2.3. The problem of delayed firing and evasion. An instance
of 4, there is a time lag between P’s sighting of E and the arrival of the
projectile. Let us say P is allowed one shot, which he must aim at some
future location of E. The objective of E, assumed mobile, is to maneuver
so as best to confound P’s prediction. Randomization is the essence, for
any systematic zigzag is as predictable as uniform motion. But just how is
a difficult matter, for we assume that E knows nothing of the shot until the
arrival of the projectile and P is free to fire at any time. It might appear
that at any instant he minimizes P’s information with a mixed strategy that
results in equiprobable distribution of E’s location over all possible places.
But not knowing when the blast will come, he ought be equiprobable at all
times and this is impossible.10

Of course, one can coin many explicit games of this ilk. One such, the
simplest nontrivial one possible, will reappear as Example 12.6.1.

Pure aiming and evasion games, such as the previous example, which
have a sort of “stationary” character (see Section 12.6), and the objectives
can be expressed in terms of information alone, are grist for the theory
of stationary stochastic processes. The extant techniques of optimal
prediction can be utilized for P and reversed for E. That is, the latter
player seeks that haphazard course which maximizes the prognostic error
of his whereabouts. Grenander’s reseaches in this direction are excellent
and deep and very likely point to a future theory that is complete, elegant,
and useful.

But once stationarity is waived, our ideas cloud again even when the
payoff embodies prediction alone.

For example, let us waive our assumption of the absolute accuracy of
P’s firing and suppose that it diminishes with range, the distance of E
away. Then it seems that E’s random strategy must incorporate, to some

19 For an extended explanation, see the fourth of References [13].

LR
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extent, fleeing from the weapon site. To what f:).(tent? Can the rate of
decrease of accuracy with range become so crlt.xcally great that, when
exceeded, E’s optimal strategy is the pure one gf just fleeing? .
Another variant is had by adding a destmatx.on fqr E; once there, h;s
mission is accomplished; P’s objective is a prior hit. Let us so modify
Example 12.2.3 and also suppose P to have more than one bul.let. Wl'len
E is fairly close to his target, going there Fllrectly ¥nak'es .hxs locailzif)n
perfectly predictable. Yet using random motions to.dlsgulse it keeps . 113
vulnerable to fire longer. Again the dilemma of fusing a pure and mixe

strategy! . o .
An(%Zher instance is a simplified version of a case of vital importance:

12.2.4. Invader interception following early warning. An enemy
g:;nt?e):e(or guided missile) E is detectec! while §ti11 far from a known
target. Its speed and heading as well as its logatlon are known' at some
instant, as might be the case with a DEW (Dlsta}nt Early Wafmg) hn;;
Defending interceptors instantly are launched; oneis shown starting from
in Figure 12.2.3, W being the point of detection. A naive defensn_ve strategy
would be the straight collision course based on t.he assumption that E
persists in a constant velocity. The dashed .pat'hs in the figure shc?w the
ensuing capture occurring when P is at C which is surrounded by a circular

capture region.
But what if E takes a less direct route to the target? The solid paths

sketched suggest some possibilities (for emphasis, let us not fe.ar fantastic
deviations).!? If E randomizes over some set of these, the interceptors

Target

Figure 12.2.3

11 We suppose no fuel limitation on E.
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are faced with what is essentially a search game. Their object is to discover
E before he reaches the target.

We cannot solve this game whose optimal strategies are certain to be
mixed. But it is another illustration of the blending quandary. Use of
extreme, outré paths by E will make finding him difficult, but their great
length leaves him vulnerable too long and so deters his probability of
success. How best should he compromise between the pure—going
directly to target—and the mixed strategies ?

12.3. SEARCH GAMES WITH IMMOBILE HIDERS

In the simplest case one player E, the “hider,” secretes an object some-
where in a region %, which may be in a space of any dimension number.
His opponent P, the seeker, strives to find it in the least time. As E
endeavors to maximize this time of search, it is the payoff.

We shall suppose simple motion on adequate approximation to P’s
mode of travel—a fixed speed with complete freedom in his choice of
direction. Surrounding P will be a fixed region of surveillance, let us say a
sphere of diameter d. The object is found when it is contacted by this region.
Then, as P searches, he cuts a swath of diameter din %. A traverse of #
by P in which all of Z is searched without duplication will be called a tour.

We are going to be tolerant in this definition. For example, with a
circular surveillance region, P could not execute a perfect tour of a square
. But we shall overlook small transgressions, such as the overlaps that
occur on sharp bends of P’s path or small protrusions outside of % due to
serrations or sharp corners in its boundary. Thus we shall suppose that
the cross-section “area” of P’s swath times the length of a tour is the
“volume” of #. (The words in quotes apply to a three-dimensional #;
for a planar one read “width” and “area”). Consequently, the length of
tour is fixed, and, as P moves at a given speed, so is the time required. The
latter we will call 7. In practice, a sensible complete search of Z without
unavoidable duplication or waste should require but little more time than
T and we neglect this excess.

In this simple search game E has one move: he places the object
anywhere in Z. Then P endeavors to find it as quickly as possible, starting
from any point of 2 he wishes.

THEOREM 12.3.1. The Value of the simple search game is 3T. The only
optimal (mixed) strategy of E is to place the object equiprobably in Z.
An optimal strategy for P is to traverse some tour and its reverse (the
same route traveled in the opposite direction), each with probability }.

Proof. Let us think of the route of some tour unfurled into a straight
line. Then, to within a reasonably small error, each hiding place E might
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select in Z can be identified with the point of the tour (line) at which the
object is discovered.

1. Let E play the equiprobable strategy. If P searches via any tour,
then the object’s location will have a uniform probability distribution over
the line. As P traverses this line with constant speed, the expected time
to discovery is one-half the total or 3T. If P elects any search scheme
not a tour, it is clear that its inefficiency will render the expected
time > 37.

2. Let P play the strategy of the theorem. A pure strategy by E is
tantamount to his selection of a point on the unfurled tour. If U is the
resulting time of discovery for a traverse in one direction, this time will be
T — U for the other direction. The payoff is then 3U+ (T — U= 1T
The theorem follows from the standard definitions of game theory.

Remark. We see from the proof that the liberty granted P of choosing
his starting point is far more generous than necessary.

Problem 12.3.1. -Give an optimal strategy for P essentially distinct from
that of the theorem or a mixture of such for different tours.

If P governs a team of s identical searchers, it is evident that he should
divide Z into s portions of equal area and assign one searcher to each.
Optimal play for P results when each searcher acts optimally in his portion.
Thus we have

COROLLARY 12.3.1. The Value of the simple search game with s searchers
(and one hider) is 37/s.

On the other hand, if the number of hidden objects is augmented, the
payoff being the time required to find them all, the difficulty of the problem
is vastly increased. Ascertaining the optinal strategies is a recondite
business and they can depend on the shape of %. For example, if Z were
long and narrow, with cross-section diameter <d, the only tours possible
are the two which go from one end of £ to the other. With one searcher
and two hiders, E’s best strategy is to place the latter at the extremities of #
for the payoff will then be at least T, which is the best possible. For a
spherical #, on the contrary, it is evident that no pure strategy can be
optimal for E. Even more difficult are optimal search strategies.

But—and this our main point—if the number & of hiders is at all large,
the searching strategy matters little as long as it entails no duplication.
That is, P may allocate to his s searchers each a tour over 1/sth of Z. Even
if he announces the full strategy and E exploits this knowledge by hiding
in the last places the searchers will look, the payoff will not be greatly
increased over the Value.
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More precisely, we shall essentially prove

h T T
— g VL~
h+1s\ S

where V i§ the Value. The inequality shows that for 4 reasonably large
say 10, V is not far from TJs, the duration of a cooperative tour. Thus an ,
such tour will net P a payoff close to the Value. g

We shall derive the counterpart of (12.3.1) for a discrete model. Let
:%‘be peppe.red with dots, contiguous ones being connected by lines; thus
it 1s‘approx1mated by a linear graph. The new version of our game’ is the
obvious one: E secretly places the & hiders on any distinct dots; P in
turn starts the searchers at any s points and at each move shifts e,ach to
an adqac;nt (line connected) point. A hider is found when a searcher
occupies its point. The payoffis the number of moves which finds them all.

Wg shall take it that a sufficiently fine and regular graph simulates the
continuous game closely. It is convenient and harmless to suppose that
the number N of points is divisible by s.

The result on discrete games, Theorem 12.3.2 below, will be taken as
adequate evidence for (12.3.1).

Let v be the payoff when the strategies are as follows: E plays equi-
probf:lbly, that is, the hiders are distributed randomly with all subsets of
h points equally likely; P plays any definite multiple tour, that is, no
searcher ever moves to a point previously searched. ’

(12.3.1)

LEMMA 12.3.1
h N

P> ——,
h+1s
{"roof. If all hi.ders are found on the kth move, P will have covered ks
points. The h hiders must have been at these points with at least one
occupied that was explored on P’s final move. The number of ways of

placing % hiders on ks points is (I;IS) We deduct the unwanted cases

w(k;:re il)ll hiders are on the (k — 1)s nonfinal points, which number
— Ds . ..
( A ) The difference, when divided by (JZ), the total number of

hider gllocations, is the probability that the payoff is k. As v is the ex-
pectation of the payoff

o E ()= (“3)

=L

where M = NJs.

..
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By rearranging (“summation by parts”),

M (ME) -0
__\h/
where

As Ms = N,

To assess ¢ W€ utilize the familiar relation

5(0- 1)
()<t (e (020

h
s ious i ide i ded as a sum of s equal terms. If we
which is obvious if the left side is regal;s,, on the right are totally the con-

sum over j and note that “numerato

secutive integers from 0 to sM — 1= N — 1, we have

<50 = 65

E(hli 1) 1[N y_:_g]

=50 T h 4+t

Now

Finally,

p—

N) s
h

h N
_ b N4t kN

T h4+1 s h+1s

with N points of the simple
the Value V satisfies

S

raEoREM 12.3.2. For a discrete version
search game with h hiders and s searchers,

N
_LN_<V<_
h+1s 5

Proof. As NJsisthe number of moves in a multiple tour, which certainly

must discover all hiders, the right inequality is clear.
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Let E play equiprobably. Any tour by P leads, by the lemma, to a
payoff > (h/h + 1)(N/s). Thisinequality applies for all strategies of P,
for any such with duplications could be replaced by a better one without
them. Because E is the maximizing player and has a strategy guaranteeing
a payoff satisfying this inequality, ¥ must satisfy it too.

Research Problem 12.3.1. Analyze games like the foregoing except that
they terminate when a certain number (< A) or fraction (< 1) of the hiders
is found.

12.4. SEARCH GAMES WITH MOBILE HIDERS

As far as we know, virtually nothing is known about the solution of
such games. The following instance appears to embody the quintessence
of the problem,

Example 12.4.1. The princess and the monster. The monster P searches
for the princess E, the time required being the payoff. They are both
in a totally dark room £ (of any shape), but they are each cognizant of its
boundary (possibly through small light-admitting perforations high in the
walls). Capture means the distance PE </, a quantity small in com-
parison with the dimension of . The monster, supposed highly intelligent,
moves with simple motion at a known speed w. We permit the princess
full freedom of locomotion.

We do not know how to solve this problem, but it seems certain that the
optimal strategies will be highly randomized. Our feeling is that just how
the players use chance to pick their paths is secondary; probably any
haphazard meandering will do about as well as any other.

We conjecture that the sole decision of importance rests with E. How
fast should she run? One extreme—complete immobility—seems un-
promising. For P, by a tour of Z, can be certain of a payoff not exceeding
the fixed duration of such, whereas any sort of motion by E offers at
least the possibility of an arbitrarily long period of freedom.1®? At the
other extreme, a very high speed (compared to w) by E can hardly be
desirable, for in a short while capture is nearly certain; she will run into
the monster.

Somewhere between the extremes, then, will be an optimal speed for E.
Where ?

This example typifies the problem of pure search games. The following
one is similarly unsolved but appears simpler and may possibly serve as a
stepping stone.

12 Of course, it may be that the expected period is less than the time for a tour, but it
seems unlikely.

..
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Example 12.4.2. A simpler princess-monster game. The only innovation
is that now P and E are each confined to a closed curve. We take it as a
circle.

One simplification is that at each instant, if their speeds are assumed
fixed, the players each have but two directional choices.

The conjecture as to E’s optimal speed now appears to have a natural
candidate: E should employ w, P’s speed. Our shaky grounds are merely
that equal speeds alone preserve the distance PE should both players use
the same pure strategy.

Research Problem 12.4.1. Solve the discrete version of this game. The
players each occupy one of n (> 3) points distributed on the circumference
of a circle. They move alternately, transferring their positions to either of
the two adjacent points. Capture occurs when either both players occupy
the same point or they occupy adjacent points and interchange positions
after one move apiece. The payoff is the number of moves, say, of P
until capture. An equiprobable distribution is probably the most desirable
way to get the play started.

12.5s. THE IMPORTANCE OF APPROXIMATIONS

Almost all the investigations on game theory up to the present have
been concerned with precise statements, but there are essential domains in
the subject where the exact solution has but a negligible practical advantage
over an approximation thereof. Of the two chief such categories we discuss
below, the first pertains not only to games but to the whole general field of
maximization.”® The second applies to games of incomplete information
whose solution entails a mixed strategy.

1. The principle of flat laxity

Although we have ventured to affix a name to this principle, it is so
obvious that there is embarrassment even in its mention. It lies under the
nose of every student of the elementary calculus, yet we can recall no
instance of its explicit delineation.

The student learns early to maximize a function by seeking points where
its derivative is zero. The obvious principle we wish to asseverate is merely
this:

At such maxima the value of the argument of the function is generally not
critical. This is simply because the derivative—interpreted in the elemen-
tary way as a rate of change—is zero. Elementary as such ideas may be,
three types of maxima are shown at (a) of Figure 12.5.1: one with zero

13 As is well known, logically equivalent to minimization, for we need but
maximize the negative of a quantity to minimize it.
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derivative and two other common types, the third being at the endpoint of
the domain of the argument. Observe the relative changes in function
value for the same deviation of the argument from its value at the
maximizing point in the three cases.

Solutions in the variational calculus which are integrals of the Euler
equation likewise often belong to the zero derivative genre; we shall call
the whole class of this type of maxima (and minima) flaz. They are all
subject to the title principal: small deviations of the argument from its
optimizing value are uncritical.

It is highly likely that the flat laxity principle accounts for the aston-
ishing dearth of practical applications of the many elegant mathematical
maxima that have appeared throughout scientific history.

This discussion can be applied to saddlepoints and so to game theory.
In differential games, the principle supplies some pragmatic advice. In
those cases with interior maxima or minima of the control variables, the
gains from a too scrupulous adherence to an optimal strategy may not be

(%)

Figure 12.5.1

¢ Examples: The right circular cylinder of a given volume has minimal surface area
when the height is equal to the diameter. However, tin cans of this proportion are
seldom seen on market shelves.

Munk’s elliptical wing planform of minimal induced drag seldom appears in aircraft
design.

L
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worth while. But in those cases with extreme optimizing values, such as
those with linear vectograms, the gains from optimal play can be very
genuine.

Finally, let us look at games of incomplete information with mixed

optimal strategies. For simplicity, we think of a case with a finite, discrete
matrix. A typical mixed strategy solution demands that one player play a
certain subset™® of n of his strategies with positive probabilities py, . - -, Py
(Zp; = 1), his opponent doing the same with ¢y, . . ., ¢,,- The positivity
of the p, and ¢; implies that each is an internal optimizer and therefore of
the flat type. The principle here grants tolerance for small errors. For
example, a plot of the payoff, whenm = n = 2, as a function of the mixing
probabilities p and g (we use p, 1 — p, instead of p;, py, etc.) might appear
typically as in Figure 12.5.1b; note that at the saddlepoint the surface has
a flat tangent plane.

But matters can be otherwise for strategies not in the foregoing subsets,
For such thé p, and g, (sec the footnote) are zero and so are extreme
optimizers with possible sensitive responses to change. This is a common-
place rather than a pedantic matter, for a complete game matrix includes
all strategies, even the absurdly bad ones. The latter are rigidly eschewed
by even mediocre human contestants. A bridge player does not waste his
trumps, not even with a small positive probability.

2. Probablistic indefiniteness
Again we suppose a game of imperfect information with mixed optimal

strategies (or at least for one player). The actual usage of such strategies
makes each partie a game of chance. Changing the strategies shifts the
odds.
The second argument for the adequacy of approximate solutions is a
facet of an old and basic question in the realm of probability. What is the
actual effect of the probability distribution over a set of alternate outcomes
when the number of trials is small?

If a gambler is betting repeatedly on a certain event and if the prob-

ability of his winning is actually .45, although he thinks it is .50, it will

take him a great many bets to detect his error. The science of statistics is

largely concerned with inferences drawn from such repeated trials and the
subject is not simple. We must not attach unwarranted importance to the
law of large numbers, which here asserts that for a very long series of bets
the gambler is almost certain to win very close to 45 of the time.

15 We wish to stress the fact that this is very often a proper subset; certain strategies
not being used at all. Such cases can, and usually are, subsumed under generality
by assigning zero probability to the latter strategies, but we have grounds here for

distinguishing them.
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'The gamt.al_er might be a player in our subject game?® and the shift in hi
win 111)r0ba1::hty due to his opponent’s improving his mixed strategy. Forl:
:?rl:te gnyu;n er of plays, then, what value a close calculation of an optimal

For games with mixed optimal strategies, both principles 1 and 2 ¢
be effective and so the two effects are compounded. In certain extre ne
cases the composite might even-make the range of approximation so b m;
that game theory has not much utilitarian to offer. The practical r(l)a
should have a way of recognizing such cases. P *anayet

Let us take as an example a moving target, say an aircraft or ship, bein
fired on by th‘e enemy. As a game, the payoff is to express whether ’or no%
h.e scores a hit. The target has certain maneuvers at his disposal maki
his position hard to detect or predict. This choice constitutes his strate 5.
which in this game, whose essence is information, will certainly be mi gt}i,,
Thse expecte;i1 payoff will be the hit probability. , Yo
_Suppose that by an improvement in his stra
?nt probability by, let us say, 5, 10, 25, or 5(;?’/? tI};f):aarrgfits:;t:iduce; -
instances, the situation is like that of the gambler. Will a reductio’ 01'f ;W
odds by 5 or 107 matter very much? For 50%, yes. For 257"n o e

But there may be repetition. During a war there may be on.umerou
engagements of targets and weapons; the hit probabilities approach ths
ffactlon of targets destroyed. Is it worth while to reduce the erie t ?‘
aircraft or ships lost by 59,7 By 10, 25, or 50%? peieEag

Such are our grounds for the conclusion that tohe practical goal of gam
theory §hou.ld be, in certain cases, especially those with sparse informagtio y
approximations. There seems to be little proof in support. In fact 1:1111 ’
searlc(:h game with many immobile hiders in Section 12.3 is the' only inst;mc:
v:le now, In Section 12.4, we conjectured that, with mobile hiders, all
the steering aspects of the strategies are largely irrelevant. A proof of ,th'
a(r;d s1m1!ar results, where they are true, would mark a decided and useﬁlj
:h vacllnce in game theqry. Thus one essential problem is somehow to assess

; egree of approximation appropriate to various classes of games.

; ut even when we feel satisfied that an approximation will be the thing
or a certain game, how do we find it? We must be wary of the techniques

of ;uch sub.Jects as mathematical physics. For we are dealing with conﬂ(ilcts

gn .t}}ere is always the'opponent ready to exploit to the uttermost an ’
eviation from the optimal. As the whole theory is predicated on h‘y

al\;/?ys act;ng ratfionally, we must posit that he will do so. °
1T one player, for example, is defending a city wi

his strategy consists of an allocation of iis fches ?1:0?121: :;(:nglat}f: 3:}3

1* Which must be a win-or-lose t -
the dea is clearly very somona ype (two-valued payoff) for a perfect paradigm, but
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have a close approximation to an excellent strategy if he adequately
guards ninety-nine. But if his opponent has good intelligence, all his
forces will surge through the neglected gate and the near perfect defense
is useless.

So the techniques of approximation will require some innovation. They
must be proof against the worst advantage the opponent can take of them.

Although we would encourage the investigation of approximations,
we do not advocate no other approach. If exact optimal mixed strategies
were found for, say, the search games of Sections 12.3 and 12.4, although
their actual use may gain a contestant little, their discovery would probably
throw a floodlight on an area of dark ignorance.

12.6. THE CHANCIFYING METHOD

The name with which we have dubbed this technique of solving certain
games has a clumsy ring. But the same adjective perhaps fits the method
itself; however, for a certain class of models we know of no other.

Suppose a zero-sum two-player game of incomplete information has
“steady state” or “stationary” character. This concept is defined most
readily if we adopt a discrete model. The game is stationary if the decision
pattern recurs cyclically and at each cycle either the partie terminates or
the situation, aside from the choices made, is the same as during earlier
cycles. That is, a spectator who began witnessing a partie in midplay
could not tell how long it had been going on.

Let us say that P, the minimizing player, moves first. If necessary, we
must attach an artificial “past” so that the opening position is indistin-
guishable from one in midplay. We alter the rules so that instead of P
making the first decision, it is done in accordance with stipulated prob-
abilities 2y, ..., %, (Qx; = 1) indicated collectively by x. That is, the

?
first move is now a chance one. The Value of this new game then depends

on z and will be denoted by ¢(z).

By applying the rules to the first full cycle of moves, it is often possibie to
obtain a functional equation that ¢ must satisfy. Ifits solutionis essentially
unique so that ¢ can be ascertained, the Value of the original game will be

¥ = min ¢(z).""
z

For the sole distinction in the original game is that P has the choice of #
and he will exercise it to minimize V.1®

17 Sometimes inf ¢(x), for there are cases when a player has no optimal strategy,
that is, he cannot attain the Value ¥ but has strategies that guarantee payoff arbitrarily

close to V.
18 For a further instance see Reference [14].
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E.xample 12.6.1. A simple aiming and evading game. This game is a
discrete mc.)del of the type of Example 12.2.3, in fact, the simplest possible
such that is not trivial. In Section 12.7 we shall briefly return to these
games.

.A counter rests on one of a doubly infinite row of points. At each of
his moves P has the choice of moving it right or left to the adjacent point
Th¢.a 'moves glternate with those of E, who at each turn has the choice of.‘
w¢11‘l£:tsga—do'mtg l}(;lthinlg—o; “firing.” If E elects the latter choice, he
se point. The play then termi ; i i i
guessed fskaierad gt’ ;l) then inates; if the counter is on the point

Ba.lsic is the incomplete information structure—the time lag. Just prior
to his turn E knows all moves of P except the two most recent. Thus when
he fires E knows that either the counter is at the last observed point (P
moved RL or LR) or it is two points to the right [left] (P moved RR [LL))
And if rational, he will fire only at one of these three points. '
\ When }t’hand Ebpg?' mixed strategies, which we may assume, the payoff

ecomes the probability that E i i
Decomes & th}; ccmnter.y scores a hit, that is, guesses correctly the
. Let us chancify on P. Suppose he normally has the opening move. We
imagine that P has had a preceding move, say from the left. We replace
P’.s move by a chance one which is to the left with probability = and right
with 1 — 2 (0 < # < 1). The Value, the minimax of the hit probabilit
we will call ¢(z), which satisfies &

xc
. s(1—c)+(1—o)(1—d
#) = minmax | ° U=ad=d ey

2$(c) + (1 — 2)¢(d)

Here the max applies to th i i ile mi
over o d (0 o dpé Y the four lines on the right, while min ranges

To establish (12.6.1), at least heuristically, first, let
followin_g the chancified one as follows: If t);le counter fv:sl ﬁzvt:; tI:(l):f‘:
(Rrobabllity = ), he next moves left again with probability c and right
v.vxth 1 - Similarly, if the chancified move was to the right he continues
ngl%t with probability d. The quantities ¢ and d are to b; part of P’s
optimal strategy and will be fixed later.

The four lines after the brace correspond to E’s four possible responses
If 1}e. fires at the leftmost point—two spaces left of the last Observeci
position—he scores only if the counter is there, such requiring two left
moves, and the probability of this and so of a hit is c. The next line is
similarly the probability of the counter’s being at the central point, the

L
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]

Figure 12.6.1

preceding moves having been LR or RL. Thus the hit probability, if E
fires at the central possibility, is the second line in the brace. The third line
corresponds to E’s rightmost firing.

Finally, the last line is the payoffif E waits. Had the counter moved left,
with probability =, we are faced with a recurrence of the original situation:
the start of a chancified game with ¢ replacing =. Its Value is thus $(o).
As with probability 1 — =, E likewise confronts a game with Value ¢(d);
the fourth line is his expectation of a hit if he waits.

Now for any given ¢ and d, E will select the maximum of the four
entries. Then optimal play will dictate that P choose ¢ and d as to minimize
this max. Such will yield the Value, which is ¢(x).

The solution ¢(z) to (12.6.1) turns out involved. In a central segment
AB of its graph (Figure 12.6.1) 4 is constant, but in both extreme sections
the graph consists of infinitely many straight segments whose endpoints
have limits at 4 and B.

We have solved a few other similar problems and resulting ¢ was
similarly intricate. It’s ascertainment was tedious. And all we need of it
to solve the original game is its minimum!

But is there not a hint here of a possible technique of approximation?
The polygonal portions of the graph in Figure 12.6.1 strike the eye as being
close to smooth curves. Is there an approximate method such that the
counterpart of ¢ which it embodies is some simpler function?

The above game is one for which the arguments for approximation 1
and 2 of Section 12.5 both hold. Hence, for both it and various more
realistic versions of the same genre, some of which are of considerable
practical importance, a well-reasoned and sensible approximate solution
would suffice and be of great value.

Further details on this game appear in References [13].

Appendix

ofﬁ‘iﬁﬁzrfo:xzﬁ i?rst s;c(tii.c;l, the appendix consists of a diverse selection
ples of differential games. The solutions

" furt ' . are sketched
with hints for aid when unusual features or formal difficulties occur

Al. A HIT PROBABILITY PAYOFF

In certain military games, such as those i i
; . ose in Sections A2 and AS
player, say E, continuously fires a weapon at his opponent. The pa ’ofc;'n'e
toTbe the total probability of a hit. payos
he hit probability density p i i i
: Sity p is supposed given: p is a function of th
(sit:ﬁte _Zanablfes (and conceivably of the control variables also). Thu(; in :
nite partie, P bef:omes a function p(?) of the time, and the probabilit
of a hit in the interim (¢, ¢ + A) is hp(t) + O(H®). Y

G=p. (ALD)

Proof. Let O(1) b ili is mi
iy f(o’ " Q(¢) be the probability that the target is missed by all fire
The probability that the target is missed during (0, ¢ + A) is the

product of the probabilities that it i i
Fiows A 1y o 1t was missed during (0, ¢) and (¢, ¢ + A).

0@t + h) = Q)1 — hp(1))
ot + h) —
ot =20 _mon

3s7

..
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which in the limit is
Q' = —pQ.
As Q(0) = 1, we have

00 = exp (~ [ ptwy du).

Thus the probability of a hit during (0,7) is 1 — QO(t) and so is an
increasing function of the integral. Then if a strategy renders the integral,
say, maximal, it likewise so renders the hit probability.

Note that the formal Value ¥(x) yielded by the solution is not the hit
probability, the actual Value. The latter is 1 — exp (V(x)).

Let us think of the continuous fire as (it actually is) a succession of
small shots. It is not hard to show that in two-dimensional space, the hit
probability of a single shot varies inversely with the range, the distance
from weapon to target, for reasonably large r. Thus p may be taken as
a/r for some constant a. In three-dimensional space, correspondingly,
p = ajr®. (The former is used in the two succeeding problems only because
it facilitates the formal mathematics.)

A2, THE FIXED BATTERY PURSUIT GAME

Both players have simple motion in a plane. The pursuer P is faster and
could capture E readily were he not deterred by a barrage of gunfire as-
sisting E. The firing is continuous and emanates from a battery located
at a point O. The instantaneous hit probability is inversely proportional
to the distance OP, and its time integral, as in Section Al, is to be the
payoff.

Thus P seeks to capture with a minimum chance of being hit; he must
choose a course which compromises between a direct chase of £ and a
wariness of being too close to the battery for too long. Similarly, E must
inculcate into his flight from P maneuvering which lures P into lethal
proximity to O.

We shall use the polar coordinates r, 0 for P and the rectangular co-
ordinates z, y for E, both systems having the same origin O with the lines
6 = 0 and y = O coinciding. The speeds of P and E shall be 1 and w with
w < 1, so that w is really the speed ratio of E to P. The control variables
é and vy are as in Figure A2.1. The KE are thus

F=cos ¢

6 =1jrsing
Z = wcosy
g = wsin .
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The payoff is integral with

G =

“ I8

a being a fixed positive constant. The terminal surface is the set whe
|PE| =1, a given positive number, and &, the set with |PE| > 1. "
The solution is obtained almost entirely by pure integration /thi‘s example
bgng very exceptional in its freedom from singular phen’omena Of:le
sn.lgular surface there certainly is: when P, O, E lie on a straight iine in
tl.us order, the two symmetrical ways that P may skirt O clearlg impl
dispersal surface, with an instantaneous mixed strategy. Yy e
Our standard method then presents no difficulties (except possibly the
common one of deciding the sign of the ¥, of the initial conditions). From

the RPE, it will follow at once that E always tr. .
’ avels a st
route of P, however, lies on a curve: Yy a straight path. Any

1 . —
- = ¢; sinh (£/K(0 — ¢,)) + ¢, cosh (:}:\/E(G —¢)) + ¢4

where ¢y, . .., ¢, K are constants; K ma i i i

, » Cas ; y be of either sign, meaning that
for some paths sin, cos, replace sinh, cosh. # ®
. ;jlgure A22is a .scale plot of typical partic. Here w = %; the dots
indicate corr.espondmg values of . Naturally any corresponding pair
may be considered as a starting position.

Exercise A2.1. Write the KE for this probl i i
e 42l problem using three state variables

fxerct:se.A.?.Z. Solve a version of the preceding problem which differs
rom it in that the battery, instead of being at a point, is distributed

Figure A.2.1

T I
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o
\

Figure A2.2

uniformly over a line %. That is, G = a/d, where d = distance P
to 2.

Research Problem A2.1. Suppose in the problem of the text we had .ta.tken
for G a function more rapidly decreasing than .the inverse of r. IntultlYely
it might appear that, were this decrease rapid enough and ha.d E ;mze
enough, the best strategy for E would be to get near O and to loiter E’ ere.
Is this ever actually the case? If so, how is such a problem solved?
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A3. OPTIMAL TRAJECTORIES OF GUIDED MISSILES

The design of long-range missile trajectories so as to maximize efficiency
is a task amenable to the present methods. We are faced with a one-player
game, the payoff or quantity to be optimized usually being the fuel
consumption.

Let uslook at a prototype case. The coordinates of &, the state variables,
will be such quantities as

the positional coordinates of the missile

the velocity components

the yaw angle and other such inclinations

the current weight of the missile (decreasing due to fuel consumption).

The control variables will be, of course, just those quantities regulated
by the guidance system.

Let us say we are dealing with an ICBM designed to go from one point
on the earth’s surface to another distant one. It will have two or more
stages of powered flight, possibly jettisoning some of its bulk at the end of
each and concluding with a free fall stage.

In our approach to the problem, we work as usual retrogressively.
Starting from the given destination, we ascertain the set of state variables
enjoying the property that free fall from any such condition will bring the
missile to target. The set will comprise a surface %, in &. Using €, asa
seat of initial conditions, we construct the retrograde optimal paths by our
usual methods; the result solves the last powered stage. This solution is
extended back until it fulfills the condition of the preceding stage juncture.
Such states form a new surface %,, with the Value as a function on it.
Similarly, we proceed until we reach the stage containing launch.

Unlike many of the other problems we have treated, this one has enjoyed
a great deal of attention during recent years. Many analysts have obtained
first rate results without having heard of differential games. Can we claim
any advantages for the approach just sketched ?

Within the pure logic of method, no.

For one always begins by setting up a model, which is a more or less
simplified interpretation of reality. It is to the model and to it alone that
the mathematics is applied. Generally, and almost certainly here, the
underlying problem will be set so as to have a unique answer. Then all
techniques which obtain this one answer are equally valid. Indeed, there
should exist means of rendering them logically equivalent.

But in regard to the following two questions, differential games has
advantages over at least some alternate approaches, How much light

LT I
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does the procedure shed on aspects of the general situation other than the
mere trajectory? Does the underlying mathematics suggest a treatment of
a more realistic model of greater intricacy?

First, through the concepts %, as discussed above, the missile is not
proscribed to a prescribed path. The vehicle is routed optimally to the
optimal point of transition to free fall. (Of course, this is also achieved
through classical calculus of variations with variable end conditions,
Thus our point seems a minor one: that this consideration is more
indigenous to differential games.)

The second advantage of the differential games approach is that the
missile is not rigorously confined to a single navigational program. Should
some untoward event put it off course, our craft does not strive to regain
its old trajectory but assumes the optimal flight procedure pertinent to its
new conditions. Mathematically this situation occurs because our method
leads to the calculation of ¥ and hence of the control variables (expressible
in terms of thepartial derivatives of V') throughout &. This means that
whatever conditions (state variables) should happen to arise during flight,
we know the best way to navigate at these conditions.

Example A3.1. A simplified ICBM trajectory. The simplifications are
fairly drastic, but nothing of principle is sacrificed. Our model is illustrative
rather thari realistic. We assume

A single stage of powered flight, followed by one of free fall.

A flat earth; the gravitational force is uniform and vertical. No air
friction.

The missile thrust is of constant magnitude; steering is achieved by
varying the direction of the thrust vector.

The realistic space is two dimensional; the missile always remains in the
vertical plane containing the launching site and target. :
The loss in weight of the missile due to fuel consumption can be
neglected. 1

Thus in the #y-plane this missile is to be launched from the origin O with  f
zero velocity. The target, labeled R in Figure A3.1, is at (R,0). The _§
missile proceeds under powered flight (solid curve) to the point K where
free fall begins.

The payoff to be minimized is the energy consumed. Due to our
assumptions of constant thrust and missile weight, this is tantamount to
minimizing the duration of powered flight.

The state variables will be z, y, the missile position coordinates, and 4,
v, its velocity components (see Figure A3.1). The thrust per unit mass will

set of all possible points of & where free fall can be
Tepresents the «, y components of a typical one.

The reader can easil

ove position (z, ) and with ini
land at the point (R, 0).
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be a \]/)ector of length F z.md inclination ¢, the latter being the single control
varia le. The KE are in this case the common Newtoni
motion (g = the usual gravity constant):

an equations of

Z=u

=y
u = Fcos ¢
v=Fsing — g

We will construct € (the %, of the preceding discussion), which is the
gin; K of the figure

A little elementary dynamics leads to the representation:

z=R— 55,
Y = —88 + igs,?
u= Sl

V=, 532 0,5 > 0.

y verify thgt if a body starts a free fall from the
tial velocity (s,, 5,), at the time sy it will

“r .
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Forming the ME and RPE, then integrating the latter with the above
initial conditions, leads to the paths:
U =8, + FsA(—s; + g83)7
v =5, + (F2sphsy + )7
2 = R — 5,55 — ;7 — F25,M(—53 + gso)d7?

y = —5s5 + 3gss? — 87 — (F2sylsy + giAr? (A3.])
where 1
z = Fsa‘/s12 + (52 — 859"
Also, ¥V = = and for the optimal strategy
tan § = —
§83 — Sz

Thus the thrust direction will be constant throughout the powered flight,
a point to which we shall return later. The trajectory will therefore be a
parabola with axis parallel to the resultant vector of the thrust and gravity.

To proceed further involves the process of solving the system (A3.1) for
8y, 53, 83, and 7. The elimination leads to a fourth degree equation, and all
the sought quantities are simply expressible in terms of the proper one of
its roots.

But if we are concerned with the particular trajectory of Figure A3.1, for
which the starting conditions are

z=y=u=v=0

we are led to the actual flight trajectory easily. We can easily obtain a

linear approximation of ¥ in the neighborhood (in &) of this trajectory, for

the partial derivatives of ¥ will figure in the complete integrals of the RPE.
Carrying through this special elimination leads ultimately to

s—Epsr—n=0
g

where S = sin ¢. Thus the thrust angle is a function of Fjg. It is easy to
plot this relation by inverting a plot of Fgasa function of S. Such is done
in Figure A3.2.

The quantity F/g can be regarded as the magnitude of the thrust when
the weight of the missile is taken as the unit of force. It must exceed 1 in
order for the craft to leave the ground. When it is very large, the plot
shows that @ is near 45°, a conclusion to be expected, for this is the well-
known ballistic firing angle of maximal range (in a vacuum) and very
large thrusts are of very short duration. As F/g diminishes toward 1, the
thrust angle increases, approaching vertical launch.
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On the same figure we have plotted =/(7 + s3) [= S/(F/g)]. As this
qu:antity is the ratio of powered flight to total flight time, it serves a
poignant descriptor of the total optimal trajectory. With large thrusts, the
durati.on of powered flight is small; almost all the route is free fall. The
two times are equal when F/g is about 1.6, and for still smaller thrust
the powered phase predominates.

We saw that in this problem travel in least time implied a constant
thrust direction. But such is not always the case, even with our simple

(or no) gravity force field, no friction, etc. From a general integrati
) » €tC. tion of
the RPE, we obtain # & °

(A3.2)

where the C; are constants.

If the object of the craft is simply to reach a given location in minimal
time, then ¢ will be constant. But the general € that we have been
considering entail u, v as well as =, y, that is, terminal velocity as well as
pos.it%on count. It is clear that the craft when approaching ¥ must
anticipate its ultimate attitude before arrival. The form of (A3.2) is
plausible in this regard. For when 7 is large (x far from %), ¢ will be

.
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nearly constant, but as x nears %, the thrust vector shifts direction in
anticipation of its terminal conditions.

We stress this point to indicate that the simple anwer to our problem was
perhaps more coincidental than indigenous. It involved a constant ¢
even though velocities were germane to €. However, had the problem
been altered in any of a number of simple ways—air friction in the free fall,
multistage flight, etc.—it is likely that (A3.2) rather than constant $ would
optimize.

Problem A3.1. For a projectile steered by a variable direction thrust, as in
the preceding example, in a constant force field, show that a necessary and
sufficient condition that the least time paths to % entail constant ¢ is that

on ¥ V.V, — V,V, =0, (A3.3)

In particular, show that this condition holds if the terminal conditions
stipulate location but not final velocities.

Research Problem A3.1. If instead of the constant force field, there is one
derivable from an arbitrary potential G(z, ), what are the counterparts of
the navigational schemes ¢ = constant and (A3.2)? A case of particular
interest would be the inverse square field.

Research Problem A3.2. What is the most economical way to send up a
satellite to any circular orbit about the earth? We have in mind here an
academic but interesting model. Make the same flight assumptions as
earlier in this section except that gravity is radial and to vary inversely as
the square of the distance from the center O of the earth. For % we use the
set of all conditions at which the missile will be in a circular orbit about 0
(centrifugal must balance gravitational force).

Supposing the earth perfectly penetrable, under what conditions will
the orbital radius be greater than that of the launch point (assumed on the
surface of the earth) so that the orbit will be a possible one? Even with
possibility in this sense, the trajectory may still penetrate and then leave the
carth. If so, it might mean that satellites should be launched from

mountain tops.

Ad. AN ILLUSTRATION FROM CONTROL THEORY

We have noted that the modern theory of control seems to be subsumed
in the topic of one-player differential games. The following simple yet
typical instance is borrowed from Hale and Lasalle.?

1 S0 that two of KE become # = Fcos § — G, v = Fsin § — G,.
¢ Differential Equations: Linearity vs. Nonlinearity, SIAM Review, Vol. 5, No. 3

(July, 1963).

4
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A body of unit mass moves lineally i i i

. . . y in a fliud of unit viscosity (t
viscous drag is the negative of the velocity). We may exert conltgol( ll)le
z};Plytm‘g :. fc;rge to hthe body whose magnitude may not exceed 1 ThZ

ject is to bring the b i i in the
Deible e, g the body to rest at a prescribed point O in the least

Let z be the positional coordinate, of th i
. X e body, with O atz = 0
y be the velocity. The kinematic equations thez are endlet
i=y
Iy=-y+¢ —-1<4$<L
(The second states: acceleration = visco
o : = us force
payoff is integral with G = 1.  control foree) The
The authors’ solution is shown in Figure A4.1.3 The two curves C are

semiuniversal; they are the only paths reachi igi
! ; ing the ;
tributary to one of them. 7P B e origin; ell others are

Tl}e genesis of the semiuniversal curves is interesting. Our method
requires that we take as % a circle of radius / centered at & = 0 y = 0Oand

Figure A4.1

* Their Fequals our ¢.

-,
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later let / — 0. With positive / there will be a full family of paths from ¥
with two transition curves. As/becomes 0, the paths coalesce into just the
two shown. The transition surfaces must coincide with them and so
become semiuniversal.

Research Problem A4.1. The same as above except that now we wish to
minimize the energy needed to arrest the body at O. As such is (¢ dz, we
take G = ¢y, the only formal change.

AS5. THE BOMBER AND BATTERY GAME

This contest illustrates the astonishing variegation that may be hidden in
apparently simple military (or other) games. The full solution splits into
nine separate cases, and even some of these admit of further logical sub-
divisions. We shall but indicate this panorama here with emphasis on
some especially instructive points.

An attacking eraft, steered by P, moves in the plane with simple motion
atspeed v. His destination is E’s territory, which is bounded by a coastline,
a curve .. From a battery fixed at a point O, E fires at the invading P,
in accordance with Section Al, so that the payoff is the hit probability.

Each player will be subject to a distinct type of constraint.

For P it will be the flight time, fuel, or path length, all equivalent because
of his constant speed. We select the first: total flight time < 7. This
constraint is of the type discussed in Section 5.7.

For E we shall limit the amount of ammunition m he has available for
firing at his target P. Let ¢ be the maximal rate at which E can fire. His
control variable y will be the fraction of this rate he selects at each instant.
Then we include in the KE

m = cy, 0<y<1
and replace G = afr (see Section Al) in this case by

=¥
"

so that a diminished rate of fire is reflected in a current proportionately
diminished weapon effectiveness.

Thus P must pick a path of length not exceeding vT, with the flight time
T, prescribed from his starting point to & so as to minimize the prob-
ability of his being hit en route. During this flight, E fires at him,
allocating his ammunition, of fixed amount m, over the interlude so as to
maximize the hit probability.

The solution will probably not be of great practical importance, for the
differences in probability for slightly different routes will likely be nugatory
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(see the discussion of practical assessment in %
Chapter 11). But the instructive level is high:
the diversity of phenomena is typical of other,
especially military, problems and there is also
the illustration of two different type constraints
effective simultaneously.

When not otherwise specified, the coast &
will be taken as a straight line with the battery
location O on it. For some purposes it will
be more enlightening to place O forward of &;
we will then speak of advanced defense.! In
the first instance below we take an arbitrary
coastline.

The polar coordinates r, 8 will describe Figure A5.1
P’s location; they and his control variable
¢ are shown in Figure AS5.1. The other state variables are 7, the flight
time allowed P, and m, the ammunition allowed E. Thus the KE are

F=uvsin¢

9=—;cos¢

m='—CW9 0<"P<1

T=-1.
Besides the obvious strictures, m > 0, » > 0 on & we demand further:
vT > rsin @ (A5.1)
so that P can always reach % (at least via PB in the figure) and
0o
< 2

on grounds of symmetry. It is obvious that 6 = 0 will be a dispersal
surface (but no instantaneous mixed strategy is ever required).

There are two natural possibilities for the terminal surface:

%,: Pison.#. Thus the partie is over. There may or may not be some
excess m. As a parametrization we may take

r=5>0

6=0

m=gs,2>0

T=0. (A5.2)

‘. The case of “retarded” defense, where O lies inland, promises little further novelty
or interest.

. .
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Further, on %, V =0, and, in accordance with Section 5.7, we take

Vp=—AA1>0

as the third parameter.

%, Whenever m = 0, as there can be no further changes in payoff,
P’s strategy from here on is immaterial (we suppose T big enough to permit
his reaching .#, that is, (AS5.1)). Thus the plane m = 0 is a natural
terminal surface. Our parametrization:

r=s>0

0 =s,, 0<s2<g

m=20

T = s, (A5.3)

The next three examples are instructive but extreme cases in that they
lie on the fringes of the totality of solutions.

Example AS5.1. No constraint on E’s firepower. We assume m so large
that E can maintain full fire (y = 1) throughout the partie. Then we may
ignore m as a state variable. We take initial conditions on %, (with the
third of (A5.2) suppressed) and G = gfr.
The problem is thus a pristine illustration
of the integral constraints discussed in
Section 5.7 with, of course, L = 1.

If we solve the system with A =0, we
obtain a path, which, as we know, would
be optimal for P even were he freed of
the constraint on 7. For general coasts,
this path, such as P4 in Figure A5.2, turns
out to have an equation of the form r =
1 exp (—cyf) the c; being constants.

For 2 > 0 we obtain paths (PCy, PC,, .. .
in the figure) where the constraint is effective,
that is, the T allowed P is less than that
needed to traverse PA. Finally comes the

N path PB when there is just enough T to

Figure AS5.2 permit travel on a horizontal straight line
((AS5.1) holds as an equality).

In our standard case of a straight shore with O onit, the absolute optimal

path PA (see Figure AS.1) reduces to a circular arc of constant r. But the
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effectively constrained paths are given by

r=\/m—§

du (A54)

6= v(g + sl)‘[
Ao VXWX W)+ alh)
where X(7) = (v7)2 + (a/A + 5%
A closed expression for 6 can be worked out from the general indefinite
integral

J’ dw _ 1 log Yi(Co+B) +4+Bs+ ozx/z
VINX +0) 2B —CA—a®) YyCzr+B)+A+Br+a/X

where X = Cz? + 2Bz + A and the Y; are the roots of X — «2.
The following identity is a consequence of the RPE and ME and useful
for integrating in almost all cases.

(rV,) = —(c§V,, + Vr) = constant. (AS.5)
Example AS.2. No constraint on P’s flight

time. When P can fly a path of any length,
but E is constrained by both a maximal
firing rate ¢ and limited amount m of ammu-
nition, the optimal play is clear at once: P
will travel directly away from O until the
ammunition is exhausted; then he proceeds
to & at his leisure. It is also clear that E
commences firing at full rate (p = 1) at once

LIS
.
......
.,
.,

and so perseveres until exhaustion. P
Exercise A5.1. Using %,, obtain this result
analytically.
Of course, the above solution holds with a .
Figure A5.3

constraining T provided it is large enough
to permit P, after his radial flight, to reach % without ever decreasing
the distance OP. Precisely, we must have

m ., 0 om
T>—+ -(r + —) . (AS.6)
c v 4

Equality limits P to the path PAB of Figure AS5.3,8 4B being a circular arc.

8 If we were to envisagethis problem removed from context, this solution seems ridicu-
lous from a practical standpoint. Nevertheless it is mathematically correct. The unreality
stems from the formulation of the problem, not its solution. Such formulations are a
hazard for the tyro at military analysis and we urge the reader to reflect on this instance.

¢ Of course, A is part of the terminal conditions €, and so the arc 4B will not be part
of the formal solution. Nevertheless it will make such an appearance a few pages hence.
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Example A5.3. With limited ammunition and no maneuvering allowed the
invader. If (A5.1) holds as an equality, P has no alternative to the straight
route perpendicular to . The situation is then identical to that of
Example 7.14.1 with its semiuniversal surface.

It is interesting to geneéralize to the advanced defense case in which O
lies a distance D ahead of .#. First suppose m small. Then E should fire
full blast (y = 1) while z ranges over an interval centered at O of appropri-
ate length. But if m > 2Dc/v, E has ammunition enough to last while P
traverses more than the distance 2D. Then E should commence full fire at
the latest possible time such that he can maintain it until P reaches Z.
That is, he fires during the final interval of play of durationm/c. If z < mvyjc,
E opens fire at once; P will reach £ with some m being surplus.

All this leads to the paths in &, the (r, m)-plane, the only two state
variables needed, shown in Figure AS5.4, which the reader can readily

interpret.

Research Problem A5. Ts it possible to derive this manifestly correct
solution completely by analysis?

We now investigate more basic solutions and seek a possible y—
universal surface. The ideas of Chapter 7 require first a recasting into the
terminal payoff form. The number of state variables is then five; our
general technique is exceeded, but we can solve this game nonetheless.

The three equations (7.13.2) become in this case

Vo +2V,=0 (9
r
. . A
mmv[V,sm ¢ — —<cos 95] —Vp=—pp—Vp=0 ()
P r

Yesing=0 o
;

where u is the adjoined state variable.

Leaving aside the case of ¥,, = 0, obviously trivial, (p) tells us that sin ¢
= 0. Such navigation implies a circular arc path about O with r constant.

If E had enough ammunition for perpetual full fire, we would be back to
Example A5.1. Therefore we suppose that ¢ # 1 always. We are faced
with finding ¥, the optimal way for E to distribute his limited fire power.

We assert p should be constant during the action and this constant rate
should be such that E consumes all his m just as P reaches £. For if
E expended his ammunition nonuniformly, there would have to be at
least one small interim when y was greater than the mean rate pand another
in which v was less. If P were to take a short cut during the latter interim,
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by flying the chord of a small arc of his optimal circular path instead of the
arc itself, and, further, he uses the T" saved thereby to increase r slightly
during the former interim, then he betters (decreases) the payoff and E’s
strategy could not be optimal.

On the alleged universal surface r and ¥ are constants, say s; and s,.
The parametrization can then be written (in the original &):

r=s

6 =20

51

m = CSyS,

T=s5,. (AS.5)
On this surface, from the original definition of the payoff,

V=a ’ E dr = 4%2%
or 51

Problem AS.1. Show that the necessary conditions («), (8), () hold on the
surface (A5.5). Prove by direct reasoning that it is a universal surface.

Using (A5.5) as initial conditions, we can integrate the RPE in the
standard way with ¢ = 0 and 1 to obtain the two sets of tributary paths.

The tributaries with full fire (y = 1)

The integration shows that r is always an increasing function of 7,
so that these paths meet the universal surface on its interior side. Note
also that they are then distinct from those of Example AS.1 where 7 is
nonincreasing in 7.

we .



374  APPENDIX [a5]

Figure AS.5

Not all the integrals will represent optimal paths. For those with s, = 0,
which meet. the universal surface at % with ammunition spent, would
contradict Example AS.1 were they optimal.

We examine the limiting behaviour as  — 0. Among the path equations
with s, = 0 we find

r=s, —om, g ="

51

But such are the radial paths of Example A5.2. Further, we see that when
the universal surface is reached (r = 0), then m = 0 and x continues on the
circular arc with no firing (p = 0). Thus we have exactly the total path of
Figure A5.3. This path is unique when E has no surplus T for any other.
Thus this case marks the blending of this subsection with Example A5.2 as
T increases through this critical value.

We now investigate what happens as T begins to fall below the above
critical amount. The paths progress through the sequence PA,B; of
Figure A5.5. On P4, there is maximal fire (y = 1); on the circular arcs
AB; (i # 1), E fires at the constant rate ¢ < 1, which is such as to just
exhaust the ammunition when P reaches .#.

Let us see what happens at the other limiting extreme as ¢ = 5, — 1.
The tributary paths become circular arcs which lie in the universal surface.
Such can only happen when

m = cT.

Thus there is no break between tributary and universal path.

To unify our ideas let us see what happens when P starts from a given
starting point with a fixed but a sufficiently large m and T varies. The
smallest allowable T admits only the direct path PF of Figure AS.5.
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Increasing 7" brings us continuously to the circular arc PD (as in Example
AS.1) with a decreasing payoff. We suppose there is excess ammunition,
that is, m > 0 at D, Greater T, as we know, leads to the PAB;,. AsTis
decreased in this set we must arrive at the path P4, with 4,on £ and ¢ = 1
throughout. This path, as we saw, is distinct from PD and is not optimal.
Thus the payoff for P4, is greater than that for PD. But the payoff for
PA(By) is lower (it is the lowest possible). Therefore there must be an
intermediate path, say PA,B,, for which ¥ is the same as for PD.

Thus if T'is increased over that for PD, for a certain interval PD remains
optimal and ¥ stays constant. This happens until T grows enough for P
to traverse PA,B,; at this state P has two optimal strategies. (Is there a
dispersal surface?) From then on increasing T leads through the PA4;B;
series with decreasing V until the ultimate at PA,.

The greater m, the greater the gap. With infinite m, as Example A5.1
shows, PD is the best possible path and the gap has widened into non-
existence.

Research Problem A5.2. Characterize the set of starting positions men-
tioned at which P enjoys two optimal strategies. Is the set attained by a
construction as in Section 6.5 so that a dispersal surface results?

The tributaries with no fire (¢ = 0)
Integration of the RPE shows that these paths are straight. They then
must meet the universal surface tangentially and appear as in Figure A5.6.
The conditions for such are clearly

ré > oT
and m < that required for continuous full fire over the dashed arc of the
figure.

o
=y

—
-
$\

Figure AS5.6
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Observe the plausibility. The path is that which maximizes the minimal
range occurring on it.

Finally, there must be still another class of solutions. Consider Example
A5.3 where vT = r sin 0 so that P is confined to a straight horizontal path
and m is not great, so that E fires fully in a final interval. We saw a
resulting semiuniversal surface.

For a slight increase in 7, the path neighbors the straight one and we
should expect a qualitative similarity.

Such phenomena are more interesting in the case of advanced defense.
The chief novelty here is that many optimal parties will end with m
exhausted before P reaches .# (the reason is intuitively obvious). A €, is
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suggested which lies left of O and with T just enough to permit a horizontal
flight to O.

Two classes of solutions result. One has paths on which r increases with
¢t and which curve toward .#. The second entails a transition surface.
A typical optimal partie appears in Figure A5.7. Here B is a point of the
above €, and A of the transition surface. The segments P4 and BC are
straight with no fire. The latter occurs only on 4B, a curve which meets
PA and BC smoothly, has (aside from A and B) r < |OA| = |OB} and is
symmetrical about its midpoint.

Although such paths resemble those of Example A5.3, we have not
studied the details of the fusion with that case. They probably also merge
with the ¢ = 0 tributaries of the universal surface.

The latter surfaces, when the defense is advanced, entail optimal play
as in Figure A5.8. The arc P,B lies on the universal surface, but it termi-
nates at a set of points such as B. Left of here the optimal paths are, as
above, horizontal with no fire.

The possible blending of the Figure AS5.6 tributaries on such universal
surfaces with the paths of Figure AS.1 is manifestly obvious.
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contained introduction covers combination of events, dependent events, Bernoulli
trials, etc. Translation by Richard Silverman. 148pp. 5% x 84. 63544-9 Pa. $7.95

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv + 360pp. 5% x 8%.

67597-1 Pa. $10.95

STATISTICS MANUAL, Edwin L. Crow, et al. Comprehensive, practical collection
of classical and modern methods prepared by U.S. Naval Ordnance Test Station.
Stress on use. Basics of statistics assumed. 288pp. 5% x 8%. 60599-X Pa. $7.95

DICTIONARY/OUTLINE OF BASIC STATISTICS, John E. Freund and Frank J.
Williams. A clear concise dictionary of over 1,000 statistical terms and an outline of
statistical formulas covering probability, nonparametric tests, much more. 208pp.
5% x 8%. 66796-0 Pa. $7.95

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Important text explains regulation of variables, uses of
statistical control to achieve quality control in industry, agriculture, other areas.
192pp. 5% x 8%. 65232-7 Pa. $7.95

METHODS OF THERMODYNAMICS, Howard Reiss. Outstanding text focuses
on physical technique of thermodynamics, typical problem areas of understanding,
and significance and use of thermodynamic potential. 1965 edition. 238pp. 5% x 8%.

69445-3 Pa. $8.95

STATISTICAL ADJUSTMENT OF DATA, W. Edwards Deming. Introduction to
basic concepts of statistics, curve fitting, least squares solution, conditions without para-

meter, conditions containing parameters. 26 exercises worked out. 271pp. 5% x 8%.
64685-8 Pa. $9.95

TENSOR CALCULUS, J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 84. 63612-7 Pa. $9.95
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ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8%. 64940-7 Pa. $18.95

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill.
Standard text covers fundamentals of statistical mechanics, applications to fluctuation
theory, imperfect gases, distribution functions, more. 448pp. 5% x 84%.

65390-0 Pa. $11.95

ORDINARY DIFFERENTIAL EQUATIONS AND STABILITY THEORY: An
Introduction, David A. Sanchez. Brief, modern treatment. Linear equation, stability

theory for autonomous and nonautonomous systems, etc. 164pp. 5% x 84.
63828-6 Pa. $6.95

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac’s anti-particles, Bohr’s model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 24895-X Pa. $795

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, nonsingu-
larity and inverses in connection with the development of canonical matrices under
the relation of equivalence, and without the intervention of determinants. Includes
exercises. 237pp. 5% x 84. 66810-X Pa. $8.95

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, edited by Morris H. Shamos. 25 crucial discoveries: Newton’s laws of
motion, Chadwick’s study of the neutron, Hertz on electromagnetic waves, more.
Original accounts clearly annotated. 370pp. 5% x 8%, 25346-5 Pa. $10.95

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E.C. Zachmanoglou and Dale W. Thoe. Essentials of partial dif-
ferential equations applied to common problems in engineering and the physical sci-
ences. Problems and answers. 416pp. 5% x 84%. 65251-3 Pa. $11.95

BURNHAM’S CELESTIAL HANDBOOK, Robert Burnham, Jr. Thorough guide
to the stars beyond our solar system. Exhaustive treatment. Alphabetical by constel-
lation: Andromeda to Cetus in Vol. 1; Chamaeleon to Orion in Vol. 2; and Pavo to
Vulpecula in Vol. 3. Hundreds of illustrations. Index in Vol. 3. 2,000pp. 6% x 9%.
23567-X, 23568-8, 23673-0 Pa., Three-vol. set $44.85

CHEMICAL MAGIC, Leonard A. Ford. Second Edition, Revised by E. Winston
Grundmeier. Over 100 unusual stunts demonstrating cold fire, dust explosions,
much more. Text explains scientific principles and stresses safety precautions.
128pp. 5% x 8%. 67628-5 Pa. $5.95

AMATEUR ASTRONOMER’S HANDBOOXK, ].B. Sidgwick. Timeless, compre-
hensive coverage of telescopes, mirrors, lenses, mountings, telescope drives,

micrometers, spectroscopes, more. 189 illustrations. 576pp. 5% x 8%. (Available in
U.S. only) 24034-7 Pa. $11.95
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A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief his-
tory of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 41 illustrations. 195pp. 5% x 8%. 60255-9 Pa. $8.95

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W.W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoenicians
through 19th-century figures such as Grassman, Galois, Riemann. Fourth edition.
522pp. 5% x 8%. 20630-0 Pa. $11.95

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
5% x 8% 20429-4, 20430-8 Pa., Two-vol. set $26.90

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes’ own diagrams, togeth-
er with definitive Smith-Latham translation. 244pp. 5% x 8%. 60068-8 Pa. $8.95

THE ORIGINS OF THE INFINITESIMAL CALCULUS, Margaret E. Baron.
Only fully detailed and documented account of crucial discipline: origins; develop-
ment by Galileo, Kepler, Cavalieri; contributions of Newton, Leibniz, more. 304pp.
5% x 8%. (Available in U.S. and Canada only) 65371-4 Pa. $9.95

THE HISTORY OF THE CALCULUS AND ITS CONCEFTUAL DEVELOP-
MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of Newton,
Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8%. 60509-4 Pa. $9.95

THE THIRTEEN BOOKS OF EUCLID’S ELEMENTS, translated with introduc-
tion and commentary by Sir Thomas L. Heath. Definitive edition. Textual and lin-
guistic notes, mathematical analysis. 2,500 years of critical commentary. Not
abridged. 1,414pp. 5% x 8%.  60088-2, 60089-0, 60090-4 Pa., Three-vol. set $32.85

GAMES AND DECISIONS: Introduction and Critical Survey, R. Duncan Luce
and Howard Raiffa. Superb nontechnical introduction to game theory, primarily
applied to social sciences. Utility theory, zero-sum games, n-person games, decision-
making, much more. Bibliography. 509pp. 5% x 8%4. 65943-7 Pa. $13.95

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas N.H.
Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of modern
arithmetic, algebra, geometry and number systems derived from ancient civiliza-
tions. 320pp. 5% x 8%. 25563-8 Pa. $8.95

CALCULUS REFRESHER FOR TECHNICAL PEOPLE, A. Albert Klaf. Covers
important aspects of integral and differential calculus via 756 questions. 566 prob-
lems, most answered. 431pp. 5% x 8%, 20370-0 Pa. $8.95
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CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A M. Yaglom and I.M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex poly-
gons, many other topics. Solutions. Total of 445pp. 5% x 8%. Two-vol. set.
Vol. I: 65536-9 Pa. $7.95
Vol. II: 655377 Pa. $7.95

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS,
Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate elementary
and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8%.

65355-2 Pa. $4.95

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of one
of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map
coloring, problem of the Koenigsberg bridges, much more, described with clarity
and wit. 43 figures. 210pp. 5% x 8%, 25933-1 Pa. $6.95

RELATIVITY IN ILLUSTRATIONS, Jacob T. Schwartz. Clear nontechnical treat-
ment makes relativity more accessible than ever before. Over 60 drawings illustrate
concepts more clearly than text alone. Only high school geometry needed.
Bibliography. 128pp. 6% x 9%4. 25965-X Pa. $7.95

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. 304pp. 5% x 8%. 65942-9 Pa. $8.95

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal functions and applications of the Fourier method to boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8%.  65973-9 Pa. $11.95

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin. Superb
self-contained text covers “abstract algebra”: sets and numbers, theory of groups, the-
ory of rings, much more. Numerous well-chosen examples, exercises. 247pp. 5% x 8%.

65940-2 Pa. $8.95

STARS AND RELATIVITY, Ya. B. Zel'dovich and I. D. Novikov. Vol. 1 of
Relativistic Astrophysics by famed Russian scientists. General relativity, properties of
matter under astrophysical conditions, stars and stellar systems. Deep physical
insights, clear presentation. 1971 edition. References. 544pp. 5% x 8%.

69424-0 Pa. $14.95
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ture, history, social sciences and other areas.
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